|
|
|
import numpy as np
|
|
|
|
from numpy import random
|
|
|
|
import cv2
|
|
|
|
|
|
|
|
def make_gaussians(cluster_n, img_size):
|
|
|
|
points = []
|
|
|
|
ref_distrs = []
|
|
|
|
for i in xrange(cluster_n):
|
|
|
|
mean = (0.1 + 0.8*random.rand(2)) * img_size
|
|
|
|
a = (random.rand(2, 2)-0.5)*img_size*0.1
|
|
|
|
cov = np.dot(a.T, a) + img_size*0.05*np.eye(2)
|
|
|
|
n = 100 + random.randint(900)
|
|
|
|
pts = random.multivariate_normal(mean, cov, n)
|
|
|
|
points.append( pts )
|
|
|
|
ref_distrs.append( (mean, cov) )
|
|
|
|
points = np.float32( np.vstack(points) )
|
|
|
|
return points, ref_distrs
|
|
|
|
|
|
|
|
def draw_gaussain(img, mean, cov, color):
|
|
|
|
x, y = np.int32(mean)
|
|
|
|
w, u, vt = cv2.SVDecomp(cov)
|
|
|
|
ang = np.arctan2(u[1, 0], u[0, 0])*(180/np.pi)
|
|
|
|
s1, s2 = np.sqrt(w)*3.0
|
|
|
|
cv2.ellipse(img, (x, y), (s1, s2), ang, 0, 360, color, 1, cv2.CV_AA)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
cluster_n = 5
|
|
|
|
img_size = 512
|
|
|
|
|
|
|
|
print 'press any key to update distributions, ESC - exit\n'
|
|
|
|
|
|
|
|
while True:
|
|
|
|
print 'sampling distributions...'
|
|
|
|
points, ref_distrs = make_gaussians(cluster_n, img_size)
|
|
|
|
|
|
|
|
print 'EM (opencv) ...'
|
|
|
|
em = cv2.EM(cluster_n, cv2.EM_COV_MAT_GENERIC)
|
|
|
|
em.train(points)
|
|
|
|
means = em.getMat('means')
|
|
|
|
covs = em.getMatVector('covs')
|
|
|
|
found_distrs = zip(means, covs)
|
|
|
|
print 'ready!\n'
|
|
|
|
|
|
|
|
img = np.zeros((img_size, img_size, 3), np.uint8)
|
|
|
|
for x, y in np.int32(points):
|
|
|
|
cv2.circle(img, (x, y), 1, (255, 255, 255), -1)
|
|
|
|
for m, cov in ref_distrs:
|
|
|
|
draw_gaussain(img, m, cov, (0, 255, 0))
|
|
|
|
for m, cov in found_distrs:
|
|
|
|
draw_gaussain(img, m, cov, (0, 0, 255))
|
|
|
|
|
|
|
|
cv2.imshow('gaussian mixture', img)
|
|
|
|
ch = 0xFF & cv2.waitKey(0)
|
|
|
|
if ch == 27:
|
|
|
|
break
|
|
|
|
cv2.destroyAllWindows()
|