|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
// Trating application for Soft Cascades.
|
|
|
|
|
|
|
|
#include <sft/common.hpp>
|
|
|
|
#include <sft/octave.hpp>
|
|
|
|
|
|
|
|
int main(int argc, char** argv)
|
|
|
|
{
|
|
|
|
// hard coded now
|
|
|
|
int nfeatures = 50;
|
|
|
|
int npositives = 10;
|
|
|
|
int nnegatives = 10;
|
|
|
|
int nsamples = npositives + nnegatives;
|
|
|
|
cv::Size model(64, 128);
|
|
|
|
|
|
|
|
sft::Octave boost;
|
|
|
|
cv::Mat train_data(nfeatures, nsamples, CV_32FC1);
|
|
|
|
|
|
|
|
sft::FeaturePool pool(model, nfeatures);
|
|
|
|
|
|
|
|
cv::RNG rng;
|
|
|
|
|
|
|
|
for (int y = 0; y < nfeatures; ++y)
|
|
|
|
for (int x = 0; x < nsamples; ++x)
|
|
|
|
train_data.at<float>(y, x) = rng.uniform(0.f, 1.f);
|
|
|
|
|
|
|
|
int tflag = CV_COL_SAMPLE;
|
|
|
|
cv::Mat responses(nsamples, 1, CV_32FC1);
|
|
|
|
for (int y = 0; y < nsamples; ++y)
|
|
|
|
responses.at<float>(y, 0) = (y < npositives) ? 1.f : 0.f;
|
|
|
|
|
|
|
|
|
|
|
|
cv::Mat var_idx(1, nfeatures, CV_32SC1);
|
|
|
|
for (int x = 0; x < nfeatures; ++x)
|
|
|
|
var_idx.at<int>(0, x) = x;
|
|
|
|
|
|
|
|
// Mat sample_idx;
|
|
|
|
cv::Mat sample_idx(1, nsamples, CV_32SC1);
|
|
|
|
for (int x = 0; x < nsamples; ++x)
|
|
|
|
sample_idx.at<int>(0, x) = x;
|
|
|
|
|
|
|
|
cv::Mat var_type(1, nfeatures + 1, CV_8UC1);
|
|
|
|
for (int x = 0; x < nfeatures; ++x)
|
|
|
|
var_type.at<uchar>(0, x) = CV_VAR_ORDERED;
|
|
|
|
|
|
|
|
var_type.at<uchar>(0, nfeatures) = CV_VAR_CATEGORICAL;
|
|
|
|
|
|
|
|
cv::Mat missing_mask;
|
|
|
|
|
|
|
|
CvBoostParams params;
|
|
|
|
{
|
|
|
|
params.max_categories = 10;
|
|
|
|
params.max_depth = 2;
|
|
|
|
params.min_sample_count = 2;
|
|
|
|
params.cv_folds = 0;
|
|
|
|
params.truncate_pruned_tree = false;
|
|
|
|
|
|
|
|
/// ??????????????????
|
|
|
|
params.regression_accuracy = 0.01;
|
|
|
|
params.use_surrogates = false;
|
|
|
|
params.use_1se_rule = false;
|
|
|
|
|
|
|
|
///////// boost params
|
|
|
|
params.boost_type = CvBoost::GENTLE;
|
|
|
|
params.weak_count = 1;
|
|
|
|
params.split_criteria = CvBoost::SQERR;
|
|
|
|
params.weight_trim_rate = 0.95;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool update = false;
|
|
|
|
|
|
|
|
boost.train(train_data, responses, var_idx, sample_idx, var_type, missing_mask);
|
|
|
|
|
|
|
|
// CvFileStorage* fs = cvOpenFileStorage( "/home/kellan/train_res.xml", 0, CV_STORAGE_WRITE );
|
|
|
|
// boost.write(fs, "test_res");
|
|
|
|
|
|
|
|
// cvReleaseFileStorage( &fs );
|
|
|
|
}
|