|
|
|
import unittest
|
|
|
|
import random
|
|
|
|
import time
|
|
|
|
import math
|
|
|
|
import sys
|
|
|
|
import array
|
|
|
|
import urllib
|
|
|
|
import tarfile
|
|
|
|
import hashlib
|
|
|
|
import os
|
|
|
|
import getopt
|
|
|
|
import operator
|
|
|
|
import functools
|
|
|
|
|
|
|
|
import cv2.cv as cv
|
|
|
|
|
|
|
|
class OpenCVTests(unittest.TestCase):
|
|
|
|
|
|
|
|
depths = [ cv.IPL_DEPTH_8U, cv.IPL_DEPTH_8S, cv.IPL_DEPTH_16U, cv.IPL_DEPTH_16S, cv.IPL_DEPTH_32S, cv.IPL_DEPTH_32F, cv.IPL_DEPTH_64F ]
|
|
|
|
|
|
|
|
mat_types = [
|
|
|
|
cv.CV_8UC1,
|
|
|
|
cv.CV_8UC2,
|
|
|
|
cv.CV_8UC3,
|
|
|
|
cv.CV_8UC4,
|
|
|
|
cv.CV_8SC1,
|
|
|
|
cv.CV_8SC2,
|
|
|
|
cv.CV_8SC3,
|
|
|
|
cv.CV_8SC4,
|
|
|
|
cv.CV_16UC1,
|
|
|
|
cv.CV_16UC2,
|
|
|
|
cv.CV_16UC3,
|
|
|
|
cv.CV_16UC4,
|
|
|
|
cv.CV_16SC1,
|
|
|
|
cv.CV_16SC2,
|
|
|
|
cv.CV_16SC3,
|
|
|
|
cv.CV_16SC4,
|
|
|
|
cv.CV_32SC1,
|
|
|
|
cv.CV_32SC2,
|
|
|
|
cv.CV_32SC3,
|
|
|
|
cv.CV_32SC4,
|
|
|
|
cv.CV_32FC1,
|
|
|
|
cv.CV_32FC2,
|
|
|
|
cv.CV_32FC3,
|
|
|
|
cv.CV_32FC4,
|
|
|
|
cv.CV_64FC1,
|
|
|
|
cv.CV_64FC2,
|
|
|
|
cv.CV_64FC3,
|
|
|
|
cv.CV_64FC4,
|
|
|
|
]
|
|
|
|
mat_types_single = [
|
|
|
|
cv.CV_8UC1,
|
|
|
|
cv.CV_8SC1,
|
|
|
|
cv.CV_16UC1,
|
|
|
|
cv.CV_16SC1,
|
|
|
|
cv.CV_32SC1,
|
|
|
|
cv.CV_32FC1,
|
|
|
|
cv.CV_64FC1,
|
|
|
|
]
|
|
|
|
|
|
|
|
def depthsize(self, d):
|
|
|
|
return { cv.IPL_DEPTH_8U : 1,
|
|
|
|
cv.IPL_DEPTH_8S : 1,
|
|
|
|
cv.IPL_DEPTH_16U : 2,
|
|
|
|
cv.IPL_DEPTH_16S : 2,
|
|
|
|
cv.IPL_DEPTH_32S : 4,
|
|
|
|
cv.IPL_DEPTH_32F : 4,
|
|
|
|
cv.IPL_DEPTH_64F : 8 }[d]
|
|
|
|
|
|
|
|
def get_sample(self, filename, iscolor = cv.CV_LOAD_IMAGE_COLOR):
|
|
|
|
if not filename in self.image_cache:
|
|
|
|
filedata = urllib.urlopen("https://raw.github.com/Itseez/opencv/master/" + filename).read()
|
|
|
|
imagefiledata = cv.CreateMatHeader(1, len(filedata), cv.CV_8UC1)
|
|
|
|
cv.SetData(imagefiledata, filedata, len(filedata))
|
|
|
|
self.image_cache[filename] = cv.DecodeImageM(imagefiledata, iscolor)
|
|
|
|
return self.image_cache[filename]
|
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
self.image_cache = {}
|
|
|
|
|
|
|
|
def snap(self, img):
|
|
|
|
self.snapL([img])
|
|
|
|
|
|
|
|
def snapL(self, L):
|
|
|
|
for i,img in enumerate(L):
|
|
|
|
cv.NamedWindow("snap-%d" % i, 1)
|
|
|
|
cv.ShowImage("snap-%d" % i, img)
|
|
|
|
cv.WaitKey()
|
|
|
|
cv.DestroyAllWindows()
|
|
|
|
|
|
|
|
def hashimg(self, im):
|
|
|
|
""" Compute a hash for an image, useful for image comparisons """
|
|
|
|
return hashlib.md5(im.tostring()).digest()
|
|
|
|
|
|
|
|
# Tests to run first; check the handful of basic operations that the later tests rely on
|
|
|
|
|
|
|
|
class PreliminaryTests(OpenCVTests):
|
|
|
|
|
|
|
|
def test_lena(self):
|
|
|
|
# Check that the lena jpg image has loaded correctly
|
|
|
|
# This test uses a 'golden' MD5 hash of the Lena image
|
|
|
|
# If the JPEG decompressor changes, it is possible that the MD5 hash will change,
|
|
|
|
# so the hash here will need to change.
|
|
|
|
|
|
|
|
im = self.get_sample("samples/c/lena.jpg")
|
|
|
|
# self.snap(im) # uncomment this line to view the image, when regilding
|
|
|
|
self.assertEqual(hashlib.md5(im.tostring()).hexdigest(), "9dcd9247f9811c6ce86675ba7b0297b6")
|
|
|
|
|
|
|
|
def test_LoadImage(self):
|
|
|
|
self.assertRaises(TypeError, lambda: cv.LoadImage())
|
|
|
|
self.assertRaises(TypeError, lambda: cv.LoadImage(4))
|
|
|
|
self.assertRaises(TypeError, lambda: cv.LoadImage('foo.jpg', 1, 1))
|
|
|
|
self.assertRaises(TypeError, lambda: cv.LoadImage('foo.jpg', xiscolor=cv.CV_LOAD_IMAGE_COLOR))
|
|
|
|
|
|
|
|
def test_types(self):
|
|
|
|
self.assert_(type(cv.CreateImage((7,5), cv.IPL_DEPTH_8U, 1)) == cv.iplimage)
|
|
|
|
self.assert_(type(cv.CreateMat(5, 7, cv.CV_32FC1)) == cv.cvmat)
|
|
|
|
for i,t in enumerate(self.mat_types):
|
|
|
|
basefunc = [
|
|
|
|
cv.CV_8UC,
|
|
|
|
cv.CV_8SC,
|
|
|
|
cv.CV_16UC,
|
|
|
|
cv.CV_16SC,
|
|
|
|
cv.CV_32SC,
|
|
|
|
cv.CV_32FC,
|
|
|
|
cv.CV_64FC,
|
|
|
|
][i / 4]
|
|
|
|
self.assertEqual(basefunc(1 + (i % 4)), t)
|
|
|
|
|
|
|
|
def test_tostring(self):
|
|
|
|
|
|
|
|
for w in [ 1, 4, 64, 512, 640]:
|
|
|
|
for h in [ 1, 4, 64, 480, 512]:
|
|
|
|
for c in [1, 2, 3, 4]:
|
|
|
|
for d in self.depths:
|
|
|
|
a = cv.CreateImage((w,h), d, c);
|
|
|
|
self.assert_(len(a.tostring()) == w * h * c * self.depthsize(d))
|
|
|
|
|
|
|
|
for w in [ 32, 96, 480 ]:
|
|
|
|
for h in [ 32, 96, 480 ]:
|
|
|
|
depth_size = {
|
|
|
|
cv.IPL_DEPTH_8U : 1,
|
|
|
|
cv.IPL_DEPTH_8S : 1,
|
|
|
|
cv.IPL_DEPTH_16U : 2,
|
|
|
|
cv.IPL_DEPTH_16S : 2,
|
|
|
|
cv.IPL_DEPTH_32S : 4,
|
|
|
|
cv.IPL_DEPTH_32F : 4,
|
|
|
|
cv.IPL_DEPTH_64F : 8
|
|
|
|
}
|
|
|
|
for f in self.depths:
|
|
|
|
for channels in (1,2,3,4):
|
|
|
|
img = cv.CreateImage((w, h), f, channels)
|
|
|
|
esize = (w * h * channels * depth_size[f])
|
|
|
|
self.assert_(len(img.tostring()) == esize)
|
|
|
|
cv.SetData(img, " " * esize, w * channels * depth_size[f])
|
|
|
|
self.assert_(len(img.tostring()) == esize)
|
|
|
|
|
|
|
|
mattype_size = {
|
|
|
|
cv.CV_8UC1 : 1,
|
|
|
|
cv.CV_8UC2 : 1,
|
|
|
|
cv.CV_8UC3 : 1,
|
|
|
|
cv.CV_8UC4 : 1,
|
|
|
|
cv.CV_8SC1 : 1,
|
|
|
|
cv.CV_8SC2 : 1,
|
|
|
|
cv.CV_8SC3 : 1,
|
|
|
|
cv.CV_8SC4 : 1,
|
|
|
|
cv.CV_16UC1 : 2,
|
|
|
|
cv.CV_16UC2 : 2,
|
|
|
|
cv.CV_16UC3 : 2,
|
|
|
|
cv.CV_16UC4 : 2,
|
|
|
|
cv.CV_16SC1 : 2,
|
|
|
|
cv.CV_16SC2 : 2,
|
|
|
|
cv.CV_16SC3 : 2,
|
|
|
|
cv.CV_16SC4 : 2,
|
|
|
|
cv.CV_32SC1 : 4,
|
|
|
|
cv.CV_32SC2 : 4,
|
|
|
|
cv.CV_32SC3 : 4,
|
|
|
|
cv.CV_32SC4 : 4,
|
|
|
|
cv.CV_32FC1 : 4,
|
|
|
|
cv.CV_32FC2 : 4,
|
|
|
|
cv.CV_32FC3 : 4,
|
|
|
|
cv.CV_32FC4 : 4,
|
|
|
|
cv.CV_64FC1 : 8,
|
|
|
|
cv.CV_64FC2 : 8,
|
|
|
|
cv.CV_64FC3 : 8,
|
|
|
|
cv.CV_64FC4 : 8
|
|
|
|
}
|
|
|
|
|
|
|
|
for t in self.mat_types:
|
|
|
|
for im in [cv.CreateMat(h, w, t), cv.CreateMatND([h, w], t)]:
|
|
|
|
elemsize = cv.CV_MAT_CN(cv.GetElemType(im)) * mattype_size[cv.GetElemType(im)]
|
|
|
|
cv.SetData(im, " " * (w * h * elemsize), (w * elemsize))
|
|
|
|
esize = (w * h * elemsize)
|
|
|
|
self.assert_(len(im.tostring()) == esize)
|
|
|
|
cv.SetData(im, " " * esize, w * elemsize)
|
|
|
|
self.assert_(len(im.tostring()) == esize)
|
|
|
|
|
|
|
|
# Tests for specific OpenCV functions
|
|
|
|
|
|
|
|
class FunctionTests(OpenCVTests):
|
|
|
|
|
|
|
|
def test_AvgSdv(self):
|
|
|
|
m = cv.CreateMat(1, 8, cv.CV_32FC1)
|
|
|
|
for i,v in enumerate([2, 4, 4, 4, 5, 5, 7, 9]):
|
|
|
|
m[0,i] = (v,)
|
|
|
|
self.assertAlmostEqual(cv.Avg(m)[0], 5.0, 3)
|
|
|
|
avg,sdv = cv.AvgSdv(m)
|
|
|
|
self.assertAlmostEqual(avg[0], 5.0, 3)
|
|
|
|
self.assertAlmostEqual(sdv[0], 2.0, 3)
|
|
|
|
|
|
|
|
def test_CalcEMD2(self):
|
|
|
|
cc = {}
|
|
|
|
for r in [ 5, 10, 37, 38 ]:
|
|
|
|
scratch = cv.CreateImage((100,100), 8, 1)
|
|
|
|
cv.SetZero(scratch)
|
|
|
|
cv.Circle(scratch, (50,50), r, 255, -1)
|
|
|
|
storage = cv.CreateMemStorage()
|
|
|
|
seq = cv.FindContours(scratch, storage, cv.CV_RETR_TREE, cv.CV_CHAIN_APPROX_SIMPLE)
|
|
|
|
arr = cv.CreateMat(len(seq), 3, cv.CV_32FC1)
|
|
|
|
for i,e in enumerate(seq):
|
|
|
|
arr[i,0] = 1
|
|
|
|
arr[i,1] = e[0]
|
|
|
|
arr[i,2] = e[1]
|
|
|
|
cc[r] = arr
|
|
|
|
def myL1(A, B, D):
|
|
|
|
return abs(A[0]-B[0]) + abs(A[1]-B[1])
|
|
|
|
def myL2(A, B, D):
|
|
|
|
return math.sqrt((A[0]-B[0])**2 + (A[1]-B[1])**2)
|
|
|
|
def myC(A, B, D):
|
|
|
|
return max(abs(A[0]-B[0]), abs(A[1]-B[1]))
|
|
|
|
contours = set(cc.values())
|
|
|
|
for c0 in contours:
|
|
|
|
for c1 in contours:
|
|
|
|
self.assert_(abs(cv.CalcEMD2(c0, c1, cv.CV_DIST_L1) - cv.CalcEMD2(c0, c1, cv.CV_DIST_USER, myL1)) < 1e-3)
|
|
|
|
self.assert_(abs(cv.CalcEMD2(c0, c1, cv.CV_DIST_L2) - cv.CalcEMD2(c0, c1, cv.CV_DIST_USER, myL2)) < 1e-3)
|
|
|
|
self.assert_(abs(cv.CalcEMD2(c0, c1, cv.CV_DIST_C) - cv.CalcEMD2(c0, c1, cv.CV_DIST_USER, myC)) < 1e-3)
|
|
|
|
|
|
|
|
def test_CalcOpticalFlowBM(self):
|
|
|
|
a = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
b = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
(w,h) = cv.GetSize(a)
|
|
|
|
vel_size = (w - 8 + 1, h - 8 + 1)
|
|
|
|
velx = cv.CreateImage(vel_size, cv.IPL_DEPTH_32F, 1)
|
|
|
|
vely = cv.CreateImage(vel_size, cv.IPL_DEPTH_32F, 1)
|
|
|
|
cv.CalcOpticalFlowBM(a, b, (8,8), (1,1), (8,8), 0, velx, vely)
|
|
|
|
|
|
|
|
def test_CalcOpticalFlowPyrLK(self):
|
|
|
|
a = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
map = cv.CreateMat(2, 3, cv.CV_32FC1)
|
|
|
|
cv.GetRotationMatrix2D((256, 256), 10, 1.0, map)
|
|
|
|
b = cv.CloneMat(a)
|
|
|
|
cv.WarpAffine(a, b, map)
|
|
|
|
|
|
|
|
eig_image = cv.CreateMat(a.rows, a.cols, cv.CV_32FC1)
|
|
|
|
temp_image = cv.CreateMat(a.rows, a.cols, cv.CV_32FC1)
|
|
|
|
|
|
|
|
prevPyr = cv.CreateMat(a.rows / 3, a.cols + 8, cv.CV_8UC1)
|
|
|
|
currPyr = cv.CreateMat(a.rows / 3, a.cols + 8, cv.CV_8UC1)
|
|
|
|
prevFeatures = cv.GoodFeaturesToTrack(a, eig_image, temp_image, 400, 0.01, 0.01)
|
|
|
|
(currFeatures, status, track_error) = cv.CalcOpticalFlowPyrLK(a,
|
|
|
|
b,
|
|
|
|
prevPyr,
|
|
|
|
currPyr,
|
|
|
|
prevFeatures,
|
|
|
|
(10, 10),
|
|
|
|
3,
|
|
|
|
(cv.CV_TERMCRIT_ITER|cv.CV_TERMCRIT_EPS,20, 0.03),
|
|
|
|
0)
|
|
|
|
if 0: # enable visualization
|
|
|
|
print
|
|
|
|
print sum(status), "Points found in curr image"
|
|
|
|
for prev,this in zip(prevFeatures, currFeatures):
|
|
|
|
iprev = tuple([int(c) for c in prev])
|
|
|
|
ithis = tuple([int(c) for c in this])
|
|
|
|
cv.Circle(a, iprev, 3, 255)
|
|
|
|
cv.Circle(a, ithis, 3, 0)
|
|
|
|
cv.Line(a, iprev, ithis, 128)
|
|
|
|
|
|
|
|
self.snapL([a, b])
|
|
|
|
|
|
|
|
def test_CartToPolar(self):
|
|
|
|
x = cv.CreateMat(5, 5, cv.CV_32F)
|
|
|
|
y = cv.CreateMat(5, 5, cv.CV_32F)
|
|
|
|
mag = cv.CreateMat(5, 5, cv.CV_32F)
|
|
|
|
angle = cv.CreateMat(5, 5, cv.CV_32F)
|
|
|
|
x2 = cv.CreateMat(5, 5, cv.CV_32F)
|
|
|
|
y2 = cv.CreateMat(5, 5, cv.CV_32F)
|
|
|
|
|
|
|
|
for i in range(5):
|
|
|
|
for j in range(5):
|
|
|
|
x[i, j] = i
|
|
|
|
y[i, j] = j
|
|
|
|
|
|
|
|
for in_degrees in [False, True]:
|
|
|
|
cv.CartToPolar(x, y, mag, angle, in_degrees)
|
|
|
|
cv.PolarToCart(mag, angle, x2, y2, in_degrees)
|
|
|
|
for i in range(5):
|
|
|
|
for j in range(5):
|
|
|
|
self.assertAlmostEqual(x[i, j], x2[i, j], 1)
|
|
|
|
self.assertAlmostEqual(y[i, j], y2[i, j], 1)
|
|
|
|
|
|
|
|
def test_Circle(self):
|
|
|
|
for w,h in [(2,77), (77,2), (256, 256), (640,480)]:
|
|
|
|
img = cv.CreateImage((w,h), cv.IPL_DEPTH_8U, 1)
|
|
|
|
cv.SetZero(img)
|
|
|
|
tricky = [ -8000, -2, -1, 0, 1, h/2, h-1, h, h+1, w/2, w-1, w, w+1, 8000]
|
|
|
|
for x0 in tricky:
|
|
|
|
for y0 in tricky:
|
|
|
|
for r in [ 0, 1, 2, 3, 4, 5, w/2, w-1, w, w+1, h/2, h-1, h, h+1, 8000 ]:
|
|
|
|
for thick in [1, 2, 10]:
|
|
|
|
for t in [0, 8, 4, cv.CV_AA]:
|
|
|
|
cv.Circle(img, (x0,y0), r, 255, thick, t)
|
|
|
|
# just check that something was drawn
|
|
|
|
self.assert_(cv.Sum(img)[0] > 0)
|
|
|
|
|
|
|
|
def test_ConvertImage(self):
|
|
|
|
i1 = cv.GetImage(self.get_sample("samples/c/lena.jpg", 1))
|
|
|
|
i2 = cv.CloneImage(i1)
|
|
|
|
i3 = cv.CloneImage(i1)
|
|
|
|
cv.ConvertImage(i1, i2, cv.CV_CVTIMG_FLIP + cv.CV_CVTIMG_SWAP_RB)
|
|
|
|
self.assertNotEqual(self.hashimg(i1), self.hashimg(i2))
|
|
|
|
cv.ConvertImage(i2, i3, cv.CV_CVTIMG_FLIP + cv.CV_CVTIMG_SWAP_RB)
|
|
|
|
self.assertEqual(self.hashimg(i1), self.hashimg(i3))
|
|
|
|
|
|
|
|
def test_ConvexHull2(self):
|
|
|
|
# Draw a series of N-pointed stars, find contours, assert the contour is not convex,
|
|
|
|
# assert the hull has N segments, assert that there are N convexity defects.
|
|
|
|
|
|
|
|
def polar2xy(th, r):
|
|
|
|
return (int(400 + r * math.cos(th)), int(400 + r * math.sin(th)))
|
|
|
|
storage = cv.CreateMemStorage(0)
|
|
|
|
for way in ['CvSeq', 'CvMat', 'list']:
|
|
|
|
for points in range(3,20):
|
|
|
|
scratch = cv.CreateImage((800,800), 8, 1)
|
|
|
|
cv.SetZero(scratch)
|
|
|
|
sides = 2 * points
|
|
|
|
cv.FillPoly(scratch, [ [ polar2xy(i * 2 * math.pi / sides, [100,350][i&1]) for i in range(sides) ] ], 255)
|
|
|
|
|
|
|
|
seq = cv.FindContours(scratch, storage, cv.CV_RETR_TREE, cv.CV_CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
|
|
if way == 'CvSeq':
|
|
|
|
# pts is a CvSeq
|
|
|
|
pts = seq
|
|
|
|
elif way == 'CvMat':
|
|
|
|
# pts is a CvMat
|
|
|
|
arr = cv.CreateMat(len(seq), 1, cv.CV_32SC2)
|
|
|
|
for i,e in enumerate(seq):
|
|
|
|
arr[i,0] = e
|
|
|
|
pts = arr
|
|
|
|
elif way == 'list':
|
|
|
|
# pts is a list of 2-tuples
|
|
|
|
pts = list(seq)
|
|
|
|
else:
|
|
|
|
assert False
|
|
|
|
|
|
|
|
self.assert_(cv.CheckContourConvexity(pts) == 0)
|
|
|
|
hull = cv.ConvexHull2(pts, storage, return_points = 1)
|
|
|
|
self.assert_(cv.CheckContourConvexity(hull) == 1)
|
|
|
|
self.assert_(len(hull) == points)
|
|
|
|
|
|
|
|
if way in [ 'CvSeq', 'CvMat' ]:
|
|
|
|
defects = cv.ConvexityDefects(pts, cv.ConvexHull2(pts, storage), storage)
|
|
|
|
self.assert_(len([depth for (_,_,_,depth) in defects if (depth > 5)]) == points)
|
|
|
|
|
|
|
|
def test_CreateImage(self):
|
|
|
|
for w in [ 1, 4, 64, 512, 640]:
|
|
|
|
for h in [ 1, 4, 64, 480, 512]:
|
|
|
|
for c in [1, 2, 3, 4]:
|
|
|
|
for d in self.depths:
|
|
|
|
a = cv.CreateImage((w,h), d, c);
|
|
|
|
self.assert_(a.width == w)
|
|
|
|
self.assert_(a.height == h)
|
|
|
|
self.assert_(a.nChannels == c)
|
|
|
|
self.assert_(a.depth == d)
|
|
|
|
self.assert_(cv.GetSize(a) == (w, h))
|
|
|
|
# self.assert_(cv.GetElemType(a) == d)
|
|
|
|
self.assertRaises(cv.error, lambda: cv.CreateImage((100, 100), 9, 1))
|
|
|
|
|
|
|
|
def test_CreateMat(self):
|
|
|
|
for rows in [1, 2, 4, 16, 64, 512, 640]:
|
|
|
|
for cols in [1, 2, 4, 16, 64, 512, 640]:
|
|
|
|
for t in self.mat_types:
|
|
|
|
m = cv.CreateMat(rows, cols, t)
|
|
|
|
self.assertEqual(cv.GetElemType(m), t)
|
|
|
|
self.assertEqual(m.type, t)
|
|
|
|
self.assertRaises(cv.error, lambda: cv.CreateMat(-1, 100, cv.CV_8SC4))
|
|
|
|
self.assertRaises(cv.error, lambda: cv.CreateMat(100, -1, cv.CV_8SC4))
|
|
|
|
self.assertRaises(cv.error, lambda: cv.cvmat())
|
|
|
|
|
|
|
|
def test_DrawChessboardCorners(self):
|
|
|
|
im = cv.CreateImage((512,512), cv.IPL_DEPTH_8U, 3)
|
|
|
|
cv.SetZero(im)
|
|
|
|
cv.DrawChessboardCorners(im, (5, 5), [ ((i/5)*100+50,(i%5)*100+50) for i in range(5 * 5) ], 1)
|
|
|
|
|
|
|
|
def test_ExtractSURF(self):
|
|
|
|
img = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
w,h = cv.GetSize(img)
|
|
|
|
for hessthresh in [ 300,400,500]:
|
|
|
|
for dsize in [0,1]:
|
|
|
|
for layers in [1,3,10]:
|
|
|
|
kp,desc = cv.ExtractSURF(img, None, cv.CreateMemStorage(), (dsize, hessthresh, 3, layers))
|
|
|
|
self.assert_(len(kp) == len(desc))
|
|
|
|
for d in desc:
|
|
|
|
self.assert_(len(d) == {0:64, 1:128}[dsize])
|
|
|
|
for pt,laplacian,size,dir,hessian in kp:
|
|
|
|
self.assert_((0 <= pt[0]) and (pt[0] <= w))
|
|
|
|
self.assert_((0 <= pt[1]) and (pt[1] <= h))
|
|
|
|
self.assert_(laplacian in [-1, 0, 1])
|
|
|
|
self.assert_((0 <= dir) and (dir <= 360))
|
|
|
|
self.assert_(hessian >= hessthresh)
|
|
|
|
|
|
|
|
def test_FillPoly(self):
|
|
|
|
scribble = cv.CreateImage((640,480), cv.IPL_DEPTH_8U, 1)
|
|
|
|
random.seed(0)
|
|
|
|
for i in range(50):
|
|
|
|
cv.SetZero(scribble)
|
|
|
|
self.assert_(cv.CountNonZero(scribble) == 0)
|
|
|
|
cv.FillPoly(scribble, [ [ (random.randrange(640), random.randrange(480)) for i in range(100) ] ], (255,))
|
|
|
|
self.assert_(cv.CountNonZero(scribble) != 0)
|
|
|
|
|
|
|
|
def test_FindChessboardCorners(self):
|
|
|
|
im = cv.CreateImage((512,512), cv.IPL_DEPTH_8U, 1)
|
|
|
|
cv.Set(im, 128)
|
|
|
|
|
|
|
|
# Empty image run
|
|
|
|
status,corners = cv.FindChessboardCorners( im, (7,7) )
|
|
|
|
|
|
|
|
# Perfect checkerboard
|
|
|
|
def xf(i,j, o):
|
|
|
|
return ((96 + o) + 40 * i, (96 + o) + 40 * j)
|
|
|
|
for i in range(8):
|
|
|
|
for j in range(8):
|
|
|
|
color = ((i ^ j) & 1) * 255
|
|
|
|
cv.Rectangle(im, xf(i,j, 0), xf(i,j, 39), color, cv.CV_FILLED)
|
|
|
|
status,corners = cv.FindChessboardCorners( im, (7,7) )
|
|
|
|
self.assert_(status)
|
|
|
|
self.assert_(len(corners) == (7 * 7))
|
|
|
|
|
|
|
|
# Exercise corner display
|
|
|
|
im3 = cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_8U, 3)
|
|
|
|
cv.Merge(im, im, im, None, im3)
|
|
|
|
cv.DrawChessboardCorners(im3, (7,7), corners, status)
|
|
|
|
|
|
|
|
if 0:
|
|
|
|
self.snap(im3)
|
|
|
|
|
|
|
|
# Run it with too many corners
|
|
|
|
cv.Set(im, 128)
|
|
|
|
for i in range(40):
|
|
|
|
for j in range(40):
|
|
|
|
color = ((i ^ j) & 1) * 255
|
|
|
|
x = 30 + 6 * i
|
|
|
|
y = 30 + 4 * j
|
|
|
|
cv.Rectangle(im, (x, y), (x+4, y+4), color, cv.CV_FILLED)
|
|
|
|
status,corners = cv.FindChessboardCorners( im, (7,7) )
|
|
|
|
|
|
|
|
# XXX - this is very slow
|
|
|
|
if 0:
|
|
|
|
rng = cv.RNG(0)
|
|
|
|
cv.RandArr(rng, im, cv.CV_RAND_UNI, 0, 255.0)
|
|
|
|
self.snap(im)
|
|
|
|
status,corners = cv.FindChessboardCorners( im, (7,7) )
|
|
|
|
|
|
|
|
def test_FindContours(self):
|
|
|
|
random.seed(0)
|
|
|
|
|
|
|
|
storage = cv.CreateMemStorage()
|
|
|
|
|
|
|
|
# First run FindContours on a black image.
|
|
|
|
for mode in [cv.CV_RETR_EXTERNAL, cv.CV_RETR_LIST, cv.CV_RETR_CCOMP, cv.CV_RETR_TREE]:
|
|
|
|
for method in [cv.CV_CHAIN_CODE, cv.CV_CHAIN_APPROX_NONE, cv.CV_CHAIN_APPROX_SIMPLE, cv.CV_CHAIN_APPROX_TC89_L1, cv.CV_CHAIN_APPROX_TC89_KCOS, cv.CV_LINK_RUNS]:
|
|
|
|
scratch = cv.CreateImage((800,800), 8, 1)
|
|
|
|
cv.SetZero(scratch)
|
|
|
|
seq = cv.FindContours(scratch, storage, mode, method)
|
|
|
|
x = len(seq)
|
|
|
|
if seq:
|
|
|
|
pass
|
|
|
|
for s in seq:
|
|
|
|
pass
|
|
|
|
|
|
|
|
for trial in range(10):
|
|
|
|
scratch = cv.CreateImage((800,800), 8, 1)
|
|
|
|
cv.SetZero(scratch)
|
|
|
|
def plot(center, radius, mode):
|
|
|
|
cv.Circle(scratch, center, radius, mode, -1)
|
|
|
|
if radius < 20:
|
|
|
|
return 0
|
|
|
|
else:
|
|
|
|
newmode = 255 - mode
|
|
|
|
subs = random.choice([1,2,3])
|
|
|
|
if subs == 1:
|
|
|
|
return [ plot(center, radius - 5, newmode) ]
|
|
|
|
else:
|
|
|
|
newradius = int({ 2: radius / 2, 3: radius / 2.3 }[subs] - 5)
|
|
|
|
r = radius / 2
|
|
|
|
ret = []
|
|
|
|
for i in range(subs):
|
|
|
|
th = i * (2 * math.pi) / subs
|
|
|
|
ret.append(plot((int(center[0] + r * math.cos(th)), int(center[1] + r * math.sin(th))), newradius, newmode))
|
|
|
|
return sorted(ret)
|
|
|
|
|
|
|
|
actual = plot((400,400), 390, 255 )
|
|
|
|
|
|
|
|
seq = cv.FindContours(scratch, storage, cv.CV_RETR_TREE, cv.CV_CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
|
|
def traverse(s):
|
|
|
|
if s == None:
|
|
|
|
return 0
|
|
|
|
else:
|
|
|
|
self.assert_(abs(cv.ContourArea(s)) > 0.0)
|
|
|
|
((x,y),(w,h),th) = cv.MinAreaRect2(s, cv.CreateMemStorage())
|
|
|
|
self.assert_(((w / h) - 1.0) < 0.01)
|
|
|
|
self.assert_(abs(cv.ContourArea(s)) > 0.0)
|
|
|
|
r = []
|
|
|
|
while s:
|
|
|
|
r.append(traverse(s.v_next()))
|
|
|
|
s = s.h_next()
|
|
|
|
return sorted(r)
|
|
|
|
self.assert_(traverse(seq.v_next()) == actual)
|
|
|
|
|
|
|
|
if 1:
|
|
|
|
original = cv.CreateImage((800,800), 8, 1)
|
|
|
|
cv.SetZero(original)
|
|
|
|
cv.Circle(original, (400, 400), 200, 255, -1)
|
|
|
|
cv.Circle(original, (100, 100), 20, 255, -1)
|
|
|
|
else:
|
|
|
|
original = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
cv.Threshold(original, original, 128, 255, cv.CV_THRESH_BINARY);
|
|
|
|
|
|
|
|
contours = cv.FindContours(original, storage, cv.CV_RETR_CCOMP, cv.CV_CHAIN_APPROX_SIMPLE)
|
|
|
|
|
|
|
|
|
|
|
|
def contour_iterator(contour):
|
|
|
|
while contour:
|
|
|
|
yield contour
|
|
|
|
contour = contour.h_next()
|
|
|
|
|
|
|
|
# Should be 2 contours from the two circles above
|
|
|
|
self.assertEqual(len(list(contour_iterator(contours))), 2)
|
|
|
|
|
|
|
|
# Smoke DrawContours
|
|
|
|
sketch = cv.CreateImage(cv.GetSize(original), 8, 3)
|
|
|
|
cv.SetZero(sketch)
|
|
|
|
red = cv.RGB(255, 0, 0)
|
|
|
|
green = cv.RGB(0, 255, 0)
|
|
|
|
for c in contour_iterator(contours):
|
|
|
|
cv.DrawContours(sketch, c, red, green, 0)
|
|
|
|
# self.snap(sketch)
|
|
|
|
|
|
|
|
def test_GetAffineTransform(self):
|
|
|
|
mapping = cv.CreateMat(2, 3, cv.CV_32FC1)
|
|
|
|
cv.GetAffineTransform([ (0,0), (1,0), (0,1) ], [ (0,0), (17,0), (0,17) ], mapping)
|
|
|
|
self.assertAlmostEqual(mapping[0,0], 17, 2)
|
|
|
|
self.assertAlmostEqual(mapping[1,1], 17, 2)
|
|
|
|
|
|
|
|
def test_GetRotationMatrix2D(self):
|
|
|
|
mapping = cv.CreateMat(2, 3, cv.CV_32FC1)
|
|
|
|
for scale in [0.0, 1.0, 2.0]:
|
|
|
|
for angle in [0.0, 360.0]:
|
|
|
|
cv.GetRotationMatrix2D((0,0), angle, scale, mapping)
|
|
|
|
for r in [0, 1]:
|
|
|
|
for c in [0, 1, 2]:
|
|
|
|
if r == c:
|
|
|
|
e = scale
|
|
|
|
else:
|
|
|
|
e = 0.0
|
|
|
|
self.assertAlmostEqual(mapping[r, c], e, 2)
|
|
|
|
|
|
|
|
def test_GetSize(self):
|
|
|
|
self.assert_(cv.GetSize(cv.CreateMat(5, 7, cv.CV_32FC1)) == (7,5))
|
|
|
|
self.assert_(cv.GetSize(cv.CreateImage((7,5), cv.IPL_DEPTH_8U, 1)) == (7,5))
|
|
|
|
|
|
|
|
def test_GetStarKeypoints(self):
|
|
|
|
src = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
storage = cv.CreateMemStorage()
|
|
|
|
kp = cv.GetStarKeypoints(src, storage)
|
|
|
|
self.assert_(len(kp) > 0)
|
|
|
|
for (x,y),scale,r in kp:
|
|
|
|
self.assert_(0 <= x)
|
|
|
|
self.assert_(x <= cv.GetSize(src)[0])
|
|
|
|
self.assert_(0 <= y)
|
|
|
|
self.assert_(y <= cv.GetSize(src)[1])
|
|
|
|
return
|
|
|
|
scribble = cv.CreateImage(cv.GetSize(src), 8, 3)
|
|
|
|
cv.CvtColor(src, scribble, cv.CV_GRAY2BGR)
|
|
|
|
for (x,y),scale,r in kp:
|
|
|
|
print x,y,scale,r
|
|
|
|
cv.Circle(scribble, (x,y), scale, cv.RGB(255,0,0))
|
|
|
|
self.snap(scribble)
|
|
|
|
|
|
|
|
def test_GetSubRect(self):
|
|
|
|
src = cv.CreateImage((100,100), 8, 1)
|
|
|
|
data = "z" * (100 * 100)
|
|
|
|
|
|
|
|
cv.SetData(src, data, 100)
|
|
|
|
start_count = sys.getrefcount(data)
|
|
|
|
|
|
|
|
iter = 77
|
|
|
|
subs = []
|
|
|
|
for i in range(iter):
|
|
|
|
sub = cv.GetSubRect(src, (0, 0, 10, 10))
|
|
|
|
subs.append(sub)
|
|
|
|
self.assert_(sys.getrefcount(data) == (start_count + iter))
|
|
|
|
|
|
|
|
src = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
made = cv.CreateImage(cv.GetSize(src), 8, 1)
|
|
|
|
sub = cv.CreateMat(32, 32, cv.CV_8UC1)
|
|
|
|
for x in range(0, 512, 32):
|
|
|
|
for y in range(0, 512, 32):
|
|
|
|
sub = cv.GetSubRect(src, (x, y, 32, 32))
|
|
|
|
cv.SetImageROI(made, (x, y, 32, 32))
|
|
|
|
cv.Copy(sub, made)
|
|
|
|
cv.ResetImageROI(made)
|
|
|
|
cv.AbsDiff(made, src, made)
|
|
|
|
self.assert_(cv.CountNonZero(made) == 0)
|
|
|
|
|
|
|
|
for m1 in [cv.CreateMat(1, 10, cv.CV_8UC1), cv.CreateImage((10, 1), 8, 1)]:
|
|
|
|
for i in range(10):
|
|
|
|
m1[0, i] = i
|
|
|
|
def aslist(cvmat): return list(array.array('B', cvmat.tostring()))
|
|
|
|
m2 = cv.GetSubRect(m1, (5, 0, 4, 1))
|
|
|
|
m3 = cv.GetSubRect(m2, (1, 0, 2, 1))
|
|
|
|
self.assertEqual(aslist(m1), range(10))
|
|
|
|
self.assertEqual(aslist(m2), range(5, 9))
|
|
|
|
self.assertEqual(aslist(m3), range(6, 8))
|
|
|
|
|
|
|
|
def xtest_grabCut(self):
|
|
|
|
image = self.get_sample("samples/c/lena.jpg", cv.CV_LOAD_IMAGE_COLOR)
|
|
|
|
tmp1 = cv.CreateMat(1, 13 * 5, cv.CV_32FC1)
|
|
|
|
tmp2 = cv.CreateMat(1, 13 * 5, cv.CV_32FC1)
|
|
|
|
mask = cv.CreateMat(image.rows, image.cols, cv.CV_8UC1)
|
|
|
|
cv.GrabCut(image, mask, (10,10,200,200), tmp1, tmp2, 10, cv.GC_INIT_WITH_RECT)
|
|
|
|
|
|
|
|
def test_HoughLines2_PROBABILISTIC(self):
|
|
|
|
li = cv.HoughLines2(self.yield_line_image(),
|
|
|
|
cv.CreateMemStorage(),
|
|
|
|
cv.CV_HOUGH_PROBABILISTIC,
|
|
|
|
1,
|
|
|
|
math.pi/180,
|
|
|
|
50,
|
|
|
|
50,
|
|
|
|
10)
|
|
|
|
self.assert_(len(li) > 0)
|
|
|
|
self.assert_(li[0] != None)
|
|
|
|
|
|
|
|
def test_HoughLines2_STANDARD(self):
|
|
|
|
li = cv.HoughLines2(self.yield_line_image(),
|
|
|
|
cv.CreateMemStorage(),
|
|
|
|
cv.CV_HOUGH_STANDARD,
|
|
|
|
1,
|
|
|
|
math.pi/180,
|
|
|
|
100,
|
|
|
|
0,
|
|
|
|
0)
|
|
|
|
self.assert_(len(li) > 0)
|
|
|
|
self.assert_(li[0] != None)
|
|
|
|
|
|
|
|
def test_InPaint(self):
|
|
|
|
src = self.get_sample("samples/cpp/building.jpg")
|
|
|
|
msk = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_8U, 1)
|
|
|
|
damaged = cv.CloneMat(src)
|
|
|
|
repaired = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_8U, 3)
|
|
|
|
difference = cv.CloneImage(repaired)
|
|
|
|
cv.SetZero(msk)
|
|
|
|
for method in [ cv.CV_INPAINT_NS, cv.CV_INPAINT_TELEA ]:
|
|
|
|
for (p0,p1) in [ ((10,10), (400,400)) ]:
|
|
|
|
cv.Line(damaged, p0, p1, cv.RGB(255, 0, 255), 2)
|
|
|
|
cv.Line(msk, p0, p1, 255, 2)
|
|
|
|
cv.Inpaint(damaged, msk, repaired, 10., cv.CV_INPAINT_NS)
|
|
|
|
cv.AbsDiff(src, repaired, difference)
|
|
|
|
#self.snapL([src, damaged, repaired, difference])
|
|
|
|
|
|
|
|
def test_InitLineIterator(self):
|
|
|
|
scribble = cv.CreateImage((640,480), cv.IPL_DEPTH_8U, 1)
|
|
|
|
self.assert_(len(list(cv.InitLineIterator(scribble, (20,10), (30,10)))) == 11)
|
|
|
|
|
|
|
|
def test_InRange(self):
|
|
|
|
|
|
|
|
sz = (256,256)
|
|
|
|
Igray1 = cv.CreateImage(sz,cv.IPL_DEPTH_32F,1)
|
|
|
|
Ilow1 = cv.CreateImage(sz,cv.IPL_DEPTH_32F,1)
|
|
|
|
Ihi1 = cv.CreateImage(sz,cv.IPL_DEPTH_32F,1)
|
|
|
|
Igray2 = cv.CreateImage(sz,cv.IPL_DEPTH_32F,1)
|
|
|
|
Ilow2 = cv.CreateImage(sz,cv.IPL_DEPTH_32F,1)
|
|
|
|
Ihi2 = cv.CreateImage(sz,cv.IPL_DEPTH_32F,1)
|
|
|
|
|
|
|
|
Imask = cv.CreateImage(sz, cv.IPL_DEPTH_8U,1)
|
|
|
|
Imaskt = cv.CreateImage(sz,cv.IPL_DEPTH_8U,1)
|
|
|
|
|
|
|
|
cv.InRange(Igray1, Ilow1, Ihi1, Imask);
|
|
|
|
cv.InRange(Igray2, Ilow2, Ihi2, Imaskt);
|
|
|
|
|
|
|
|
cv.Or(Imask, Imaskt, Imask);
|
|
|
|
|
|
|
|
def test_Line(self):
|
|
|
|
w,h = 640,480
|
|
|
|
img = cv.CreateImage((w,h), cv.IPL_DEPTH_8U, 1)
|
|
|
|
cv.SetZero(img)
|
|
|
|
tricky = [ -8000, -2, -1, 0, 1, h/2, h-1, h, h+1, w/2, w-1, w, w+1, 8000]
|
|
|
|
for x0 in tricky:
|
|
|
|
for y0 in tricky:
|
|
|
|
for x1 in tricky:
|
|
|
|
for y1 in tricky:
|
|
|
|
for thickness in [ 0, 1, 8 ]:
|
|
|
|
for line_type in [0, 4, 8, cv.CV_AA ]:
|
|
|
|
cv.Line(img, (x0,y0), (x1,y1), 255, thickness, line_type)
|
|
|
|
# just check that something was drawn
|
|
|
|
self.assert_(cv.Sum(img)[0] > 0)
|
|
|
|
|
|
|
|
def test_MinMaxLoc(self):
|
|
|
|
scribble = cv.CreateImage((640,480), cv.IPL_DEPTH_8U, 1)
|
|
|
|
los = [ (random.randrange(480), random.randrange(640)) for i in range(100) ]
|
|
|
|
his = [ (random.randrange(480), random.randrange(640)) for i in range(100) ]
|
|
|
|
for (lo,hi) in zip(los,his):
|
|
|
|
cv.Set(scribble, 128)
|
|
|
|
scribble[lo] = 0
|
|
|
|
scribble[hi] = 255
|
|
|
|
r = cv.MinMaxLoc(scribble)
|
|
|
|
self.assert_(r == (0, 255, tuple(reversed(lo)), tuple(reversed(hi))))
|
|
|
|
|
|
|
|
def xxx_test_PyrMeanShiftFiltering(self): # XXX - ticket #306
|
|
|
|
if 0:
|
|
|
|
src = self.get_sample("samples/c/lena.jpg", cv.CV_LOAD_IMAGE_COLOR)
|
|
|
|
dst = cv.CloneMat(src)
|
|
|
|
cv.PyrMeanShiftFiltering(src, dst, 5, 5)
|
|
|
|
print src, dst
|
|
|
|
self.snap(src)
|
|
|
|
else:
|
|
|
|
r = cv.temp_test()
|
|
|
|
print r
|
|
|
|
print len(r.tostring())
|
|
|
|
self.snap(r)
|
|
|
|
|
|
|
|
def test_Reshape(self):
|
|
|
|
# 97 rows
|
|
|
|
# 12 cols
|
|
|
|
rows = 97
|
|
|
|
cols = 12
|
|
|
|
im = cv.CreateMat( rows, cols, cv.CV_32FC1 )
|
|
|
|
elems = rows * cols * 1
|
|
|
|
def crd(im):
|
|
|
|
return cv.GetSize(im) + (cv.CV_MAT_CN(cv.GetElemType(im)),)
|
|
|
|
|
|
|
|
for c in (1, 2, 3, 4):
|
|
|
|
nc,nr,nd = crd(cv.Reshape(im, c))
|
|
|
|
self.assert_(nd == c)
|
|
|
|
self.assert_((nc * nr * nd) == elems)
|
|
|
|
|
|
|
|
nc,nr,nd = crd(cv.Reshape(im, 0, 97*2))
|
|
|
|
self.assert_(nr == 97*2)
|
|
|
|
self.assert_((nc * nr * nd) == elems)
|
|
|
|
|
|
|
|
nc,nr,nd = crd(cv.Reshape(im, 3, 97*2))
|
|
|
|
self.assert_(nr == 97*2)
|
|
|
|
self.assert_(nd == 3)
|
|
|
|
self.assert_((nc * nr * nd) == elems)
|
|
|
|
|
|
|
|
# Now test ReshapeMatND
|
|
|
|
mat = cv.CreateMatND([24], cv.CV_32FC1)
|
|
|
|
cv.Set(mat, 1.0)
|
|
|
|
self.assertEqual(cv.GetDims(cv.ReshapeMatND(mat, 0, [24, 1])), (24, 1))
|
|
|
|
self.assertEqual(cv.GetDims(cv.ReshapeMatND(mat, 0, [6, 4])), (6, 4))
|
|
|
|
self.assertEqual(cv.GetDims(cv.ReshapeMatND(mat, 24, [1])), (1,))
|
|
|
|
self.assertRaises(TypeError, lambda: cv.ReshapeMatND(mat, 12, [1]))
|
|
|
|
|
|
|
|
def test_Save(self):
|
|
|
|
for o in [ cv.CreateImage((128,128), cv.IPL_DEPTH_8U, 1), cv.CreateMat(16, 16, cv.CV_32FC1), cv.CreateMatND([7,9,4], cv.CV_32FC1) ]:
|
|
|
|
cv.Save("test.save", o)
|
|
|
|
loaded = cv.Load("test.save", cv.CreateMemStorage())
|
|
|
|
self.assert_(type(o) == type(loaded))
|
|
|
|
|
|
|
|
def test_SetIdentity(self):
|
|
|
|
for r in range(1,16):
|
|
|
|
for c in range(1, 16):
|
|
|
|
for t in self.mat_types_single:
|
|
|
|
M = cv.CreateMat(r, c, t)
|
|
|
|
cv.SetIdentity(M)
|
|
|
|
for rj in range(r):
|
|
|
|
for cj in range(c):
|
|
|
|
if rj == cj:
|
|
|
|
expected = 1.0
|
|
|
|
else:
|
|
|
|
expected = 0.0
|
|
|
|
self.assertEqual(M[rj,cj], expected)
|
|
|
|
|
|
|
|
def test_SnakeImage(self):
|
|
|
|
src = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
pts = [ (512-i,i) for i in range(0, 512, 8) ]
|
|
|
|
|
|
|
|
# Make sure that weight arguments get validated
|
|
|
|
self.assertRaises(TypeError, lambda: cv.SnakeImage(cv.GetImage(src), pts, [1,2], .01, .01, (7,7), (cv.CV_TERMCRIT_ITER, 100, 0.1)))
|
|
|
|
|
|
|
|
# Smoke by making sure that points are changed by call
|
|
|
|
r = cv.SnakeImage(cv.GetImage(src), pts, .01, .01, .01, (7,7), (cv.CV_TERMCRIT_ITER, 100, 0.1))
|
|
|
|
if 0:
|
|
|
|
cv.PolyLine(src, [ r ], 0, 255)
|
|
|
|
self.snap(src)
|
|
|
|
self.assertEqual(len(r), len(pts))
|
|
|
|
self.assertNotEqual(r, pts)
|
|
|
|
|
|
|
|
# Ensure that list of weights is same as scalar weight
|
|
|
|
w = [.01] * len(pts)
|
|
|
|
r2 = cv.SnakeImage(cv.GetImage(src), pts, w, w, w, (7,7), (cv.CV_TERMCRIT_ITER, 100, 0.1))
|
|
|
|
self.assertEqual(r, r2)
|
|
|
|
|
|
|
|
def test_KMeans2(self):
|
|
|
|
size = 500
|
|
|
|
samples = cv.CreateMat(size, 1, cv.CV_32FC3)
|
|
|
|
labels = cv.CreateMat(size, 1, cv.CV_32SC1)
|
|
|
|
centers = cv.CreateMat(2, 3, cv.CV_32FC1)
|
|
|
|
|
|
|
|
cv.Zero(samples)
|
|
|
|
cv.Zero(labels)
|
|
|
|
cv.Zero(centers)
|
|
|
|
|
|
|
|
cv.Set(cv.GetSubRect(samples, (0, 0, 1, size/2)), (255, 255, 255))
|
|
|
|
|
|
|
|
compact = cv.KMeans2(samples, 2, labels, (cv.CV_TERMCRIT_ITER, 100, 0.1), 1, 0, centers)
|
|
|
|
|
|
|
|
self.assertEqual(int(compact), 0)
|
|
|
|
|
|
|
|
random.seed(0)
|
|
|
|
for i in range(50):
|
|
|
|
index = random.randrange(size)
|
|
|
|
if index < size/2:
|
|
|
|
self.assertEqual(samples[index, 0], (255, 255, 255))
|
|
|
|
self.assertEqual(labels[index, 0], 1)
|
|
|
|
else:
|
|
|
|
self.assertEqual(samples[index, 0], (0, 0, 0))
|
|
|
|
self.assertEqual(labels[index, 0], 0)
|
|
|
|
|
|
|
|
for cluster in (0, 1):
|
|
|
|
for channel in (0, 1, 2):
|
|
|
|
self.assertEqual(int(centers[cluster, channel]), cluster*255)
|
|
|
|
|
|
|
|
def test_Sum(self):
|
|
|
|
for r in range(1,11):
|
|
|
|
for c in range(1, 11):
|
|
|
|
for t in self.mat_types_single:
|
|
|
|
M = cv.CreateMat(r, c, t)
|
|
|
|
cv.Set(M, 1)
|
|
|
|
self.assertEqual(cv.Sum(M)[0], r * c)
|
|
|
|
|
|
|
|
def test_Threshold(self):
|
|
|
|
#""" directed test for bug 2790622 """
|
|
|
|
src = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
results = set()
|
|
|
|
for i in range(10):
|
|
|
|
dst = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_8U, 1)
|
|
|
|
cv.Threshold(src, dst, 128, 128, cv.CV_THRESH_BINARY)
|
|
|
|
results.add(dst.tostring())
|
|
|
|
# Should have produced the same answer every time, so results set should have size 1
|
|
|
|
self.assert_(len(results) == 1)
|
|
|
|
|
|
|
|
# ticket #71 repro attempt
|
|
|
|
image = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
red = cv.CreateImage(cv.GetSize(image), 8, 1)
|
|
|
|
binary = cv.CreateImage(cv.GetSize(image), 8, 1)
|
|
|
|
cv.Split(image, red, None, None, None)
|
|
|
|
cv.Threshold(red, binary, 42, 255, cv.CV_THRESH_BINARY)
|
|
|
|
|
|
|
|
##############################################################################
|
|
|
|
|
|
|
|
def yield_line_image(self):
|
|
|
|
""" Needed by HoughLines tests """
|
|
|
|
src = self.get_sample("samples/cpp/building.jpg", 0)
|
|
|
|
dst = cv.CreateImage(cv.GetSize(src), 8, 1)
|
|
|
|
cv.Canny(src, dst, 50, 200, 3)
|
|
|
|
return dst
|
|
|
|
|
|
|
|
# Tests for functional areas
|
|
|
|
|
|
|
|
class AreaTests(OpenCVTests):
|
|
|
|
|
|
|
|
def test_numpy(self):
|
|
|
|
if 'fromarray' in dir(cv):
|
|
|
|
import numpy
|
|
|
|
|
|
|
|
def convert(numpydims):
|
|
|
|
""" Create a numpy array with specified dims, return the OpenCV CvMat """
|
|
|
|
a1 = numpy.array([1] * reduce(operator.__mul__, numpydims)).reshape(*numpydims).astype(numpy.float32)
|
|
|
|
return cv.fromarray(a1)
|
|
|
|
def row_col_chan(m):
|
|
|
|
col = m.cols
|
|
|
|
row = m.rows
|
|
|
|
chan = cv.CV_MAT_CN(cv.GetElemType(m))
|
|
|
|
return (row, col, chan)
|
|
|
|
|
|
|
|
self.assertEqual(row_col_chan(convert((2, 13))), (2, 13, 1))
|
|
|
|
self.assertEqual(row_col_chan(convert((2, 13, 4))), (2, 13, 4))
|
|
|
|
self.assertEqual(row_col_chan(convert((2, 13, cv.CV_CN_MAX))), (2, 13, cv.CV_CN_MAX))
|
|
|
|
self.assertRaises(TypeError, lambda: convert((2,)))
|
|
|
|
self.assertRaises(TypeError, lambda: convert((11, 17, cv.CV_CN_MAX + 1)))
|
|
|
|
|
|
|
|
for t in [cv.CV_16UC1, cv.CV_32SC1, cv.CV_32FC1]:
|
|
|
|
for d in [ (8,), (1,7), (2,3,4), (7,9,2,1,8), (1,2,3,4,5,6,7,8) ]:
|
|
|
|
total = reduce(operator.__mul__, d)
|
|
|
|
m = cv.CreateMatND(d, t)
|
|
|
|
for i in range(total):
|
|
|
|
cv.Set1D(m, i, i)
|
|
|
|
na = numpy.asarray(m).reshape((total,))
|
|
|
|
self.assertEqual(list(na), range(total))
|
|
|
|
|
|
|
|
# now do numpy -> cvmat, and verify
|
|
|
|
m2 = cv.fromarray(na, True)
|
|
|
|
|
|
|
|
# Check that new cvmat m2 contains same counting sequence
|
|
|
|
for i in range(total):
|
|
|
|
self.assertEqual(cv.Get1D(m, i)[0], i)
|
|
|
|
|
|
|
|
# Verify round-trip for 2D arrays
|
|
|
|
for rows in [2, 3, 7, 13]:
|
|
|
|
for cols in [2, 3, 7, 13]:
|
|
|
|
for allowND in [False, True]:
|
|
|
|
im = cv.CreateMatND([rows, cols], cv.CV_16UC1)
|
|
|
|
cv.SetZero(im)
|
|
|
|
a = numpy.asarray(im)
|
|
|
|
self.assertEqual(a.shape, (rows, cols))
|
|
|
|
cvmatnd = cv.fromarray(a, allowND)
|
|
|
|
self.assertEqual(cv.GetDims(cvmatnd), (rows, cols))
|
|
|
|
|
|
|
|
# im, a and cvmatnd all point to the same data, so...
|
|
|
|
for i,coord in enumerate([(0,0), (0,1), (1,0), (1,1)]):
|
|
|
|
v = 5 + i + 7
|
|
|
|
a[coord] = v
|
|
|
|
self.assertEqual(im[coord], v)
|
|
|
|
self.assertEqual(cvmatnd[coord], v)
|
|
|
|
|
|
|
|
# Cv -> Numpy 3 channel check
|
|
|
|
im = cv.CreateMatND([2, 13], cv.CV_16UC3)
|
|
|
|
self.assertEqual(numpy.asarray(im).shape, (2, 13, 3))
|
|
|
|
|
|
|
|
# multi-dimensional NumPy array
|
|
|
|
na = numpy.ones([7,9,2,1,8])
|
|
|
|
cm = cv.fromarray(na, True)
|
|
|
|
self.assertEqual(cv.GetDims(cm), (7,9,2,1,8))
|
|
|
|
|
|
|
|
# Using an array object for a CvArr parameter
|
|
|
|
ones = numpy.ones((640, 480))
|
|
|
|
r = cv.fromarray(numpy.ones((640, 480)))
|
|
|
|
cv.AddS(cv.fromarray(ones), 7, r)
|
|
|
|
self.assert_(numpy.alltrue(r == (8 * ones)))
|
|
|
|
|
|
|
|
# create arrays, use them in OpenCV and replace the the array
|
|
|
|
# looking for leaks
|
|
|
|
def randdim():
|
|
|
|
return [random.randrange(1,6) for i in range(random.randrange(1, 6))]
|
|
|
|
arrays = [numpy.ones(randdim()).astype(numpy.uint8) for i in range(10)]
|
|
|
|
cs = [cv.fromarray(a, True) for a in arrays]
|
|
|
|
for i in range(1000):
|
|
|
|
arrays[random.randrange(10)] = numpy.ones(randdim()).astype(numpy.uint8)
|
|
|
|
cs[random.randrange(10)] = cv.fromarray(arrays[random.randrange(10)], True)
|
|
|
|
for j in range(10):
|
|
|
|
self.assert_(all([c == chr(1) for c in cs[j].tostring()]))
|
|
|
|
|
|
|
|
#
|
|
|
|
m = numpy.identity(4, dtype = numpy.float32)
|
|
|
|
m = cv.fromarray(m[:3, :3])
|
|
|
|
rvec = cv.CreateMat(3, 1, cv.CV_32FC1)
|
|
|
|
rvec[0,0] = 1
|
|
|
|
rvec[1,0] = 1
|
|
|
|
rvec[2,0] = 1
|
|
|
|
cv.Rodrigues2(rvec, m)
|
|
|
|
#print m
|
|
|
|
|
|
|
|
else:
|
|
|
|
print "SKIPPING test_numpy - numpy support not built"
|
|
|
|
|
|
|
|
def test_boundscatch(self):
|
|
|
|
l2 = cv.CreateMat(256, 1, cv.CV_8U)
|
|
|
|
l2[0,0] # should be OK
|
|
|
|
self.assertRaises(cv.error, lambda: l2[1,1])
|
|
|
|
l2[0] # should be OK
|
|
|
|
self.assertRaises(cv.error, lambda: l2[299])
|
|
|
|
for n in range(1, 8):
|
|
|
|
l = cv.CreateMatND([2] * n, cv.CV_8U)
|
|
|
|
l[0] # should be OK
|
|
|
|
self.assertRaises(cv.error, lambda: l[999])
|
|
|
|
|
|
|
|
tup0 = (0,) * n
|
|
|
|
l[tup0] # should be OK
|
|
|
|
tup2 = (2,) * n
|
|
|
|
self.assertRaises(cv.error, lambda: l[tup2])
|
|
|
|
|
|
|
|
def test_stereo(self):
|
|
|
|
bm = cv.CreateStereoBMState()
|
|
|
|
def illegal_delete():
|
|
|
|
bm = cv.CreateStereoBMState()
|
|
|
|
del bm.preFilterType
|
|
|
|
def illegal_assign():
|
|
|
|
bm = cv.CreateStereoBMState()
|
|
|
|
bm.preFilterType = "foo"
|
|
|
|
|
|
|
|
self.assertRaises(TypeError, illegal_delete)
|
|
|
|
self.assertRaises(TypeError, illegal_assign)
|
|
|
|
|
|
|
|
left = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
right = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
disparity = cv.CreateMat(512, 512, cv.CV_16SC1)
|
|
|
|
cv.FindStereoCorrespondenceBM(left, right, disparity, bm)
|
|
|
|
|
|
|
|
gc = cv.CreateStereoGCState(16, 2)
|
|
|
|
left_disparity = cv.CreateMat(512, 512, cv.CV_16SC1)
|
|
|
|
right_disparity = cv.CreateMat(512, 512, cv.CV_16SC1)
|
|
|
|
|
|
|
|
def test_stereo(self):
|
|
|
|
bm = cv.CreateStereoBMState()
|
|
|
|
def illegal_delete():
|
|
|
|
bm = cv.CreateStereoBMState()
|
|
|
|
del bm.preFilterType
|
|
|
|
def illegal_assign():
|
|
|
|
bm = cv.CreateStereoBMState()
|
|
|
|
bm.preFilterType = "foo"
|
|
|
|
|
|
|
|
self.assertRaises(TypeError, illegal_delete)
|
|
|
|
self.assertRaises(TypeError, illegal_assign)
|
|
|
|
|
|
|
|
left = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
right = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
disparity = cv.CreateMat(512, 512, cv.CV_16SC1)
|
|
|
|
cv.FindStereoCorrespondenceBM(left, right, disparity, bm)
|
|
|
|
|
|
|
|
gc = cv.CreateStereoGCState(16, 2)
|
|
|
|
left_disparity = cv.CreateMat(512, 512, cv.CV_16SC1)
|
|
|
|
right_disparity = cv.CreateMat(512, 512, cv.CV_16SC1)
|
|
|
|
cv.FindStereoCorrespondenceGC(left, right, left_disparity, right_disparity, gc)
|
|
|
|
|
|
|
|
def test_kalman(self):
|
|
|
|
k = cv.CreateKalman(2, 1, 0)
|
|
|
|
|
|
|
|
def failing_test_exception(self):
|
|
|
|
a = cv.CreateImage((640, 480), cv.IPL_DEPTH_8U, 1)
|
|
|
|
b = cv.CreateImage((640, 480), cv.IPL_DEPTH_8U, 1)
|
|
|
|
self.assertRaises(cv.error, lambda: cv.Laplace(a, b))
|
|
|
|
|
|
|
|
def test_cvmat_accessors(self):
|
|
|
|
cvm = cv.CreateMat(20, 10, cv.CV_32FC1)
|
|
|
|
|
|
|
|
def test_depths(self):
|
|
|
|
#""" Make sure that the depth enums are unique """
|
|
|
|
self.assert_(len(self.depths) == len(set(self.depths)))
|
|
|
|
|
|
|
|
def test_leak(self):
|
|
|
|
#""" If CreateImage is not releasing image storage, then the loop below should use ~4GB of memory. """
|
|
|
|
for i in range(64000):
|
|
|
|
a = cv.CreateImage((1024,1024), cv.IPL_DEPTH_8U, 1)
|
|
|
|
for i in range(64000):
|
|
|
|
a = cv.CreateMat(1024, 1024, cv.CV_8UC1)
|
|
|
|
|
|
|
|
def test_histograms(self):
|
|
|
|
def split(im):
|
|
|
|
nchans = cv.CV_MAT_CN(cv.GetElemType(im))
|
|
|
|
c = [ cv.CreateImage(cv.GetSize(im), cv.IPL_DEPTH_8U, 1) for i in range(nchans) ] + [None] * (4 - nchans)
|
|
|
|
cv.Split(im, c[0], c[1], c[2], c[3])
|
|
|
|
return c[:nchans]
|
|
|
|
def imh(im):
|
|
|
|
s = split(im)
|
|
|
|
hist = cv.CreateHist([256] * len(s), cv.CV_HIST_ARRAY, [ (0,255) ] * len(s), 1)
|
|
|
|
cv.CalcHist(s, hist, 0)
|
|
|
|
return hist
|
|
|
|
|
|
|
|
dims = [180]
|
|
|
|
ranges = [(0,180)]
|
|
|
|
a = cv.CreateHist(dims, cv.CV_HIST_ARRAY , ranges, 1)
|
|
|
|
src = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
h = imh(src)
|
|
|
|
(minv, maxv, minl, maxl) = cv.GetMinMaxHistValue(h)
|
|
|
|
self.assert_(cv.QueryHistValue_nD(h, minl) == minv)
|
|
|
|
self.assert_(cv.QueryHistValue_nD(h, maxl) == maxv)
|
|
|
|
bp = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_8U, 1)
|
|
|
|
cv.CalcBackProject(split(src), bp, h)
|
|
|
|
bp = cv.CreateImage((cv.GetSize(src)[0]-2, cv.GetSize(src)[1]-2), cv.IPL_DEPTH_32F, 1)
|
|
|
|
cv.CalcBackProjectPatch(split(src), bp, (3,3), h, cv.CV_COMP_INTERSECT, 1)
|
|
|
|
|
|
|
|
for meth,expected in [(cv.CV_COMP_CORREL, 1.0), (cv.CV_COMP_CHISQR, 0.0), (cv.CV_COMP_INTERSECT, 1.0), (cv.CV_COMP_BHATTACHARYYA, 0.0)]:
|
|
|
|
self.assertEqual(cv.CompareHist(h, h, meth), expected)
|
|
|
|
|
|
|
|
def test_remap(self):
|
|
|
|
rng = cv.RNG(0)
|
|
|
|
maxError = 1e-6
|
|
|
|
raw = cv.CreateImage((640, 480), cv.IPL_DEPTH_8U, 1)
|
|
|
|
for x in range(0, 640, 20):
|
|
|
|
cv.Line(raw, (x,0), (x,480), 255, 1)
|
|
|
|
for y in range(0, 480, 20):
|
|
|
|
cv.Line(raw, (0,y), (640,y), 255, 1)
|
|
|
|
intrinsic_mat = cv.CreateMat(3, 3, cv.CV_32FC1)
|
|
|
|
distortion_coeffs = cv.CreateMat(1, 4, cv.CV_32FC1)
|
|
|
|
|
|
|
|
cv.SetZero(intrinsic_mat)
|
|
|
|
intrinsic_mat[0,2] = 320.0
|
|
|
|
intrinsic_mat[1,2] = 240.0
|
|
|
|
intrinsic_mat[0,0] = 320.0
|
|
|
|
intrinsic_mat[1,1] = 320.0
|
|
|
|
intrinsic_mat[2,2] = 1.0
|
|
|
|
cv.SetZero(distortion_coeffs)
|
|
|
|
distortion_coeffs[0,0] = 1e-1
|
|
|
|
mapx = cv.CreateImage((640, 480), cv.IPL_DEPTH_32F, 1)
|
|
|
|
mapy = cv.CreateImage((640, 480), cv.IPL_DEPTH_32F, 1)
|
|
|
|
cv.SetZero(mapx)
|
|
|
|
cv.SetZero(mapy)
|
|
|
|
cv.InitUndistortMap(intrinsic_mat, distortion_coeffs, mapx, mapy)
|
|
|
|
rect = cv.CreateImage((640, 480), cv.IPL_DEPTH_8U, 1)
|
|
|
|
|
|
|
|
(w,h) = (640,480)
|
|
|
|
rMapxy = cv.CreateMat(h, w, cv.CV_16SC2)
|
|
|
|
rMapa = cv.CreateMat(h, w, cv.CV_16UC1)
|
|
|
|
cv.ConvertMaps(mapx,mapy,rMapxy,rMapa)
|
|
|
|
|
|
|
|
cv.Remap(raw, rect, mapx, mapy)
|
|
|
|
cv.Remap(raw, rect, rMapxy, rMapa)
|
|
|
|
cv.Undistort2(raw, rect, intrinsic_mat, distortion_coeffs)
|
|
|
|
|
|
|
|
for w in [1, 4, 4095, 4096, 4097, 4100]:
|
|
|
|
p = cv.CreateImage((w,256), 8, 1)
|
|
|
|
up = cv.CreateImage((w,256), 8, 1)
|
|
|
|
cv.Undistort2(p, up, intrinsic_mat, distortion_coeffs)
|
|
|
|
|
|
|
|
fptypes = [cv.CV_32FC1, cv.CV_64FC1]
|
|
|
|
pointsCount = 7
|
|
|
|
for t0 in fptypes:
|
|
|
|
for t1 in fptypes:
|
|
|
|
for t2 in fptypes:
|
|
|
|
for t3 in fptypes:
|
|
|
|
rotation_vector = cv.CreateMat(1, 3, t0)
|
|
|
|
translation_vector = cv.CreateMat(1, 3, t1)
|
|
|
|
cv.RandArr(rng, rotation_vector, cv.CV_RAND_UNI, -1.0, 1.0)
|
|
|
|
cv.RandArr(rng, translation_vector, cv.CV_RAND_UNI, -1.0, 1.0)
|
|
|
|
object_points = cv.CreateMat(pointsCount, 3, t2)
|
|
|
|
image_points = cv.CreateMat(pointsCount, 2, t3)
|
|
|
|
cv.RandArr(rng, object_points, cv.CV_RAND_UNI, -100.0, 100.0)
|
|
|
|
cv.ProjectPoints2(object_points, rotation_vector, translation_vector, intrinsic_mat, distortion_coeffs, image_points)
|
|
|
|
|
|
|
|
reshaped_object_points = cv.Reshape(object_points, 1, 3)
|
|
|
|
reshaped_image_points = cv.CreateMat(2, pointsCount, t3)
|
|
|
|
cv.ProjectPoints2(object_points, rotation_vector, translation_vector, intrinsic_mat, distortion_coeffs, reshaped_image_points)
|
|
|
|
|
|
|
|
error = cv.Norm(reshaped_image_points, cv.Reshape(image_points, 1, 2))
|
|
|
|
self.assert_(error < maxError)
|
|
|
|
|
|
|
|
def test_arithmetic(self):
|
|
|
|
a = cv.CreateMat(4, 4, cv.CV_8UC1)
|
|
|
|
a[0,0] = 50.0
|
|
|
|
b = cv.CreateMat(4, 4, cv.CV_8UC1)
|
|
|
|
b[0,0] = 4.0
|
|
|
|
d = cv.CreateMat(4, 4, cv.CV_8UC1)
|
|
|
|
cv.Add(a, b, d)
|
|
|
|
self.assertEqual(d[0,0], 54.0)
|
|
|
|
cv.Mul(a, b, d)
|
|
|
|
self.assertEqual(d[0,0], 200.0)
|
|
|
|
|
|
|
|
|
|
|
|
def failing_test_cvtcolor(self):
|
|
|
|
src3 = self.get_sample("samples/c/lena.jpg")
|
|
|
|
src1 = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
dst8u = dict([(c,cv.CreateImage(cv.GetSize(src1), cv.IPL_DEPTH_8U, c)) for c in (1,2,3,4)])
|
|
|
|
dst16u = dict([(c,cv.CreateImage(cv.GetSize(src1), cv.IPL_DEPTH_16U, c)) for c in (1,2,3,4)])
|
|
|
|
dst32f = dict([(c,cv.CreateImage(cv.GetSize(src1), cv.IPL_DEPTH_32F, c)) for c in (1,2,3,4)])
|
|
|
|
|
|
|
|
for srcf in ["BGR", "RGB"]:
|
|
|
|
for dstf in ["Luv"]:
|
|
|
|
cv.CvtColor(src3, dst8u[3], eval("cv.CV_%s2%s" % (srcf, dstf)))
|
|
|
|
cv.CvtColor(src3, dst32f[3], eval("cv.CV_%s2%s" % (srcf, dstf)))
|
|
|
|
cv.CvtColor(src3, dst8u[3], eval("cv.CV_%s2%s" % (dstf, srcf)))
|
|
|
|
|
|
|
|
for srcf in ["BayerBG", "BayerGB", "BayerGR"]:
|
|
|
|
for dstf in ["RGB", "BGR"]:
|
|
|
|
cv.CvtColor(src1, dst8u[3], eval("cv.CV_%s2%s" % (srcf, dstf)))
|
|
|
|
|
|
|
|
def test_voronoi(self):
|
|
|
|
w,h = 500,500
|
|
|
|
|
|
|
|
storage = cv.CreateMemStorage(0)
|
|
|
|
|
|
|
|
def facet_edges(e0):
|
|
|
|
e = e0
|
|
|
|
while True:
|
|
|
|
e = cv.Subdiv2DGetEdge(e, cv.CV_NEXT_AROUND_LEFT)
|
|
|
|
yield e
|
|
|
|
if e == e0:
|
|
|
|
break
|
|
|
|
|
|
|
|
def areas(edges):
|
|
|
|
seen = []
|
|
|
|
seensorted = []
|
|
|
|
for edge in edges:
|
|
|
|
pts = [ cv.Subdiv2DEdgeOrg(e) for e in facet_edges(edge) ]
|
|
|
|
if not (None in pts):
|
|
|
|
l = [p.pt for p in pts]
|
|
|
|
ls = sorted(l)
|
|
|
|
if not(ls in seensorted):
|
|
|
|
seen.append(l)
|
|
|
|
seensorted.append(ls)
|
|
|
|
return seen
|
|
|
|
|
|
|
|
for npoints in range(1, 200):
|
|
|
|
points = [ (random.randrange(w), random.randrange(h)) for i in range(npoints) ]
|
|
|
|
subdiv = cv.CreateSubdivDelaunay2D( (0,0,w,h), storage )
|
|
|
|
for p in points:
|
|
|
|
cv.SubdivDelaunay2DInsert( subdiv, p)
|
|
|
|
cv.CalcSubdivVoronoi2D(subdiv)
|
|
|
|
ars = areas([ cv.Subdiv2DRotateEdge(e, 1) for e in subdiv.edges ] + [ cv.Subdiv2DRotateEdge(e, 3) for e in subdiv.edges ])
|
|
|
|
self.assert_(len(ars) == len(set(points)))
|
|
|
|
|
|
|
|
if False:
|
|
|
|
img = cv.CreateImage((w,h), cv.IPL_DEPTH_8U, 3)
|
|
|
|
cv.SetZero(img)
|
|
|
|
def T(x): return int(x) # int(300+x/16)
|
|
|
|
for pts in ars:
|
|
|
|
cv.FillConvexPoly( img, [(T(x),T(y)) for (x,y) in pts], cv.RGB(100+random.randrange(156),random.randrange(256),random.randrange(256)), cv.CV_AA, 0 );
|
|
|
|
for x,y in points:
|
|
|
|
cv.Circle(img, (T(x), T(y)), 3, cv.RGB(0,0,0), -1)
|
|
|
|
|
|
|
|
cv.ShowImage("snap", img)
|
|
|
|
if cv.WaitKey(10) > 0:
|
|
|
|
break
|
|
|
|
|
|
|
|
def perf_test_pow(self):
|
|
|
|
mt = cv.CreateMat(1000, 1000, cv.CV_32FC1)
|
|
|
|
dst = cv.CreateMat(1000, 1000, cv.CV_32FC1)
|
|
|
|
rng = cv.RNG(0)
|
|
|
|
cv.RandArr(rng, mt, cv.CV_RAND_UNI, 0, 1000.0)
|
|
|
|
mt[0,0] = 10
|
|
|
|
print
|
|
|
|
for a in [0.5, 2.0, 2.3, 2.4, 3.0, 37.1786] + [2.4]*10:
|
|
|
|
started = time.time()
|
|
|
|
for i in range(10):
|
|
|
|
cv.Pow(mt, dst, a)
|
|
|
|
took = (time.time() - started) / 1e7
|
|
|
|
print "%4.1f took %f ns" % (a, took * 1e9)
|
|
|
|
print dst[0,0], 10 ** 2.4
|
|
|
|
|
|
|
|
def test_access_row_col(self):
|
|
|
|
src = cv.CreateImage((8,3), 8, 1)
|
|
|
|
# Put these words
|
|
|
|
# Achilles
|
|
|
|
# Benedict
|
|
|
|
# Congreve
|
|
|
|
# in an array (3 rows, 8 columns).
|
|
|
|
# Then extract the array in various ways.
|
|
|
|
|
|
|
|
for r,w in enumerate(("Achilles", "Benedict", "Congreve")):
|
|
|
|
for c,v in enumerate(w):
|
|
|
|
src[r,c] = ord(v)
|
|
|
|
self.assertEqual(src.tostring(), "AchillesBenedictCongreve")
|
|
|
|
self.assertEqual(src[:,:].tostring(), "AchillesBenedictCongreve")
|
|
|
|
self.assertEqual(src[:,:4].tostring(), "AchiBeneCong")
|
|
|
|
self.assertEqual(src[:,0].tostring(), "ABC")
|
|
|
|
self.assertEqual(src[:,4:].tostring(), "llesdictreve")
|
|
|
|
self.assertEqual(src[::2,:].tostring(), "AchillesCongreve")
|
|
|
|
self.assertEqual(src[1:,:].tostring(), "BenedictCongreve")
|
|
|
|
self.assertEqual(src[1:2,:].tostring(), "Benedict")
|
|
|
|
self.assertEqual(src[::2,:4].tostring(), "AchiCong")
|
|
|
|
# The mats share the same storage, so updating one should update them all
|
|
|
|
lastword = src[2]
|
|
|
|
self.assertEqual(lastword.tostring(), "Congreve")
|
|
|
|
src[2,0] = ord('K')
|
|
|
|
self.assertEqual(lastword.tostring(), "Kongreve")
|
|
|
|
src[2,0] = ord('C')
|
|
|
|
|
|
|
|
# ABCD
|
|
|
|
# EFGH
|
|
|
|
# IJKL
|
|
|
|
#
|
|
|
|
# MNOP
|
|
|
|
# QRST
|
|
|
|
# UVWX
|
|
|
|
|
|
|
|
mt = cv.CreateMatND([2,3,4], cv.CV_8UC1)
|
|
|
|
for i in range(2):
|
|
|
|
for j in range(3):
|
|
|
|
for k in range(4):
|
|
|
|
mt[i,j,k] = ord('A') + k + 4 * (j + 3 * i)
|
|
|
|
self.assertEqual(mt[:,:,:1].tostring(), "AEIMQU")
|
|
|
|
self.assertEqual(mt[:,:1,:].tostring(), "ABCDMNOP")
|
|
|
|
self.assertEqual(mt[:1,:,:].tostring(), "ABCDEFGHIJKL")
|
|
|
|
self.assertEqual(mt[1,1].tostring(), "QRST")
|
|
|
|
self.assertEqual(mt[:,::2,:].tostring(), "ABCDIJKLMNOPUVWX")
|
|
|
|
|
|
|
|
# Exercise explicit GetRows
|
|
|
|
self.assertEqual(cv.GetRows(src, 0, 3).tostring(), "AchillesBenedictCongreve")
|
|
|
|
self.assertEqual(cv.GetRows(src, 0, 3, 1).tostring(), "AchillesBenedictCongreve")
|
|
|
|
self.assertEqual(cv.GetRows(src, 0, 3, 2).tostring(), "AchillesCongreve")
|
|
|
|
|
|
|
|
self.assertEqual(cv.GetRow(src, 0).tostring(), "Achilles")
|
|
|
|
|
|
|
|
self.assertEqual(cv.GetCols(src, 0, 4).tostring(), "AchiBeneCong")
|
|
|
|
|
|
|
|
self.assertEqual(cv.GetCol(src, 0).tostring(), "ABC")
|
|
|
|
self.assertEqual(cv.GetCol(src, 1).tostring(), "ceo")
|
|
|
|
|
|
|
|
self.assertEqual(cv.GetDiag(src, 0).tostring(), "Aen")
|
|
|
|
|
|
|
|
# Check that matrix type is preserved by the various operators
|
|
|
|
|
|
|
|
for mt in self.mat_types:
|
|
|
|
m = cv.CreateMat(5, 3, mt)
|
|
|
|
self.assertEqual(mt, cv.GetElemType(cv.GetRows(m, 0, 2)))
|
|
|
|
self.assertEqual(mt, cv.GetElemType(cv.GetRow(m, 0)))
|
|
|
|
self.assertEqual(mt, cv.GetElemType(cv.GetCols(m, 0, 2)))
|
|
|
|
self.assertEqual(mt, cv.GetElemType(cv.GetCol(m, 0)))
|
|
|
|
self.assertEqual(mt, cv.GetElemType(cv.GetDiag(m, 0)))
|
|
|
|
self.assertEqual(mt, cv.GetElemType(m[0]))
|
|
|
|
self.assertEqual(mt, cv.GetElemType(m[::2]))
|
|
|
|
self.assertEqual(mt, cv.GetElemType(m[:,0]))
|
|
|
|
self.assertEqual(mt, cv.GetElemType(m[:,:]))
|
|
|
|
self.assertEqual(mt, cv.GetElemType(m[::2,:]))
|
|
|
|
|
|
|
|
def test_addS_3D(self):
|
|
|
|
for dim in [ [1,1,4], [2,2,3], [7,4,3] ]:
|
|
|
|
for ty,ac in [ (cv.CV_32FC1, 'f'), (cv.CV_64FC1, 'd')]:
|
|
|
|
mat = cv.CreateMatND(dim, ty)
|
|
|
|
mat2 = cv.CreateMatND(dim, ty)
|
|
|
|
for increment in [ 0, 3, -1 ]:
|
|
|
|
cv.SetData(mat, array.array(ac, range(dim[0] * dim[1] * dim[2])), 0)
|
|
|
|
cv.AddS(mat, increment, mat2)
|
|
|
|
for i in range(dim[0]):
|
|
|
|
for j in range(dim[1]):
|
|
|
|
for k in range(dim[2]):
|
|
|
|
self.assert_(mat2[i,j,k] == mat[i,j,k] + increment)
|
|
|
|
|
|
|
|
def test_buffers(self):
|
|
|
|
ar = array.array('f', [7] * (360*640))
|
|
|
|
|
|
|
|
m = cv.CreateMat(360, 640, cv.CV_32FC1)
|
|
|
|
cv.SetData(m, ar, 4 * 640)
|
|
|
|
self.assert_(m[0,0] == 7.0)
|
|
|
|
|
|
|
|
m = cv.CreateMatND((360, 640), cv.CV_32FC1)
|
|
|
|
cv.SetData(m, ar, 4 * 640)
|
|
|
|
self.assert_(m[0,0] == 7.0)
|
|
|
|
|
|
|
|
m = cv.CreateImage((640, 360), cv.IPL_DEPTH_32F, 1)
|
|
|
|
cv.SetData(m, ar, 4 * 640)
|
|
|
|
self.assert_(m[0,0] == 7.0)
|
|
|
|
|
|
|
|
def xxtest_Filters(self):
|
|
|
|
print
|
|
|
|
m = cv.CreateMat(360, 640, cv.CV_32FC1)
|
|
|
|
d = cv.CreateMat(360, 640, cv.CV_32FC1)
|
|
|
|
for k in range(3, 21, 2):
|
|
|
|
started = time.time()
|
|
|
|
for i in range(1000):
|
|
|
|
cv.Smooth(m, m, param1=k)
|
|
|
|
print k, "took", time.time() - started
|
|
|
|
|
|
|
|
def assertSame(self, a, b):
|
|
|
|
w,h = cv.GetSize(a)
|
|
|
|
d = cv.CreateMat(h, w, cv.CV_8UC1)
|
|
|
|
cv.AbsDiff(a, b, d)
|
|
|
|
self.assert_(cv.CountNonZero(d) == 0)
|
|
|
|
|
|
|
|
def test_text(self):
|
|
|
|
img = cv.CreateImage((640,40), cv.IPL_DEPTH_8U, 1)
|
|
|
|
cv.SetZero(img)
|
|
|
|
font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 1, 1)
|
|
|
|
message = "XgfooX"
|
|
|
|
cv.PutText(img, message, (320,30), font, 255)
|
|
|
|
((w,h),bl) = cv.GetTextSize(message, font)
|
|
|
|
|
|
|
|
# Find nonzero in X and Y
|
|
|
|
Xs = []
|
|
|
|
for x in range(640):
|
|
|
|
cv.SetImageROI(img, (x, 0, 1, 40))
|
|
|
|
Xs.append(cv.Sum(img)[0] > 0)
|
|
|
|
def firstlast(l):
|
|
|
|
return (l.index(True), len(l) - list(reversed(l)).index(True))
|
|
|
|
|
|
|
|
Ys = []
|
|
|
|
for y in range(40):
|
|
|
|
cv.SetImageROI(img, (0, y, 640, 1))
|
|
|
|
Ys.append(cv.Sum(img)[0] > 0)
|
|
|
|
|
|
|
|
x0,x1 = firstlast(Xs)
|
|
|
|
y0,y1 = firstlast(Ys)
|
|
|
|
actual_width = x1 - x0
|
|
|
|
actual_height = y1 - y0
|
|
|
|
|
|
|
|
# actual_width can be up to 8 pixels smaller than GetTextSize says
|
|
|
|
self.assert_(actual_width <= w)
|
|
|
|
self.assert_((w - actual_width) <= 8)
|
|
|
|
|
|
|
|
# actual_height can be up to 4 pixels smaller than GetTextSize says
|
|
|
|
self.assert_(actual_height <= (h + bl))
|
|
|
|
self.assert_(((h + bl) - actual_height) <= 4)
|
|
|
|
|
|
|
|
cv.ResetImageROI(img)
|
|
|
|
self.assert_(w != 0)
|
|
|
|
self.assert_(h != 0)
|
|
|
|
|
|
|
|
def test_sizes(self):
|
|
|
|
sizes = [ 1, 2, 3, 97, 255, 256, 257, 947 ]
|
|
|
|
for w in sizes:
|
|
|
|
for h in sizes:
|
|
|
|
# Create an IplImage
|
|
|
|
im = cv.CreateImage((w,h), cv.IPL_DEPTH_8U, 1)
|
|
|
|
cv.Set(im, 1)
|
|
|
|
self.assert_(cv.Sum(im)[0] == (w * h))
|
|
|
|
del im
|
|
|
|
# Create a CvMat
|
|
|
|
mt = cv.CreateMat(h, w, cv.CV_8UC1)
|
|
|
|
cv.Set(mt, 1)
|
|
|
|
self.assert_(cv.Sum(mt)[0] == (w * h))
|
|
|
|
|
|
|
|
random.seed(7)
|
|
|
|
for dim in range(1, cv.CV_MAX_DIM + 1):
|
|
|
|
for attempt in range(10):
|
|
|
|
dims = [ random.choice([1,1,1,1,2,3]) for i in range(dim) ]
|
|
|
|
mt = cv.CreateMatND(dims, cv.CV_8UC1)
|
|
|
|
cv.SetZero(mt)
|
|
|
|
self.assert_(cv.Sum(mt)[0] == 0)
|
|
|
|
# Set to all-ones, verify the sum
|
|
|
|
cv.Set(mt, 1)
|
|
|
|
expected = 1
|
|
|
|
for d in dims:
|
|
|
|
expected *= d
|
|
|
|
self.assert_(cv.Sum(mt)[0] == expected)
|
|
|
|
|
|
|
|
def test_random(self):
|
|
|
|
seeds = [ 0, 1, 2**48, 2**48 + 1 ]
|
|
|
|
sequences = set()
|
|
|
|
for s in seeds:
|
|
|
|
rng = cv.RNG(s)
|
|
|
|
sequences.add(str([cv.RandInt(rng) for i in range(10)]))
|
|
|
|
self.assert_(len(seeds) == len(sequences))
|
|
|
|
|
|
|
|
rng = cv.RNG(0)
|
|
|
|
im = cv.CreateImage((1024,1024), cv.IPL_DEPTH_8U, 1)
|
|
|
|
cv.RandArr(rng, im, cv.CV_RAND_UNI, 0, 256)
|
|
|
|
cv.RandArr(rng, im, cv.CV_RAND_NORMAL, 128, 30)
|
|
|
|
if 1:
|
|
|
|
hist = cv.CreateHist([ 256 ], cv.CV_HIST_ARRAY, [ (0,255) ], 1)
|
|
|
|
cv.CalcHist([im], hist)
|
|
|
|
|
|
|
|
rng = cv.RNG()
|
|
|
|
for i in range(1000):
|
|
|
|
v = cv.RandReal(rng)
|
|
|
|
self.assert_(0 <= v)
|
|
|
|
self.assert_(v < 1)
|
|
|
|
|
|
|
|
for mode in [ cv.CV_RAND_UNI, cv.CV_RAND_NORMAL ]:
|
|
|
|
for fmt in self.mat_types:
|
|
|
|
mat = cv.CreateMat(64, 64, fmt)
|
|
|
|
cv.RandArr(cv.RNG(), mat, mode, (0,0,0,0), (1,1,1,1))
|
|
|
|
|
|
|
|
def test_MixChannels(self):
|
|
|
|
|
|
|
|
# First part - test the single case described in the documentation
|
|
|
|
rgba = cv.CreateMat(100, 100, cv.CV_8UC4)
|
|
|
|
bgr = cv.CreateMat(100, 100, cv.CV_8UC3)
|
|
|
|
alpha = cv.CreateMat(100, 100, cv.CV_8UC1)
|
|
|
|
cv.Set(rgba, (1,2,3,4))
|
|
|
|
cv.MixChannels([rgba], [bgr, alpha], [
|
|
|
|
(0, 2), # rgba[0] -> bgr[2]
|
|
|
|
(1, 1), # rgba[1] -> bgr[1]
|
|
|
|
(2, 0), # rgba[2] -> bgr[0]
|
|
|
|
(3, 3) # rgba[3] -> alpha[0]
|
|
|
|
])
|
|
|
|
self.assert_(bgr[0,0] == (3,2,1))
|
|
|
|
self.assert_(alpha[0,0] == 4)
|
|
|
|
|
|
|
|
# Second part. Choose random sets of sources and destinations,
|
|
|
|
# fill them with known values, choose random channel assignments,
|
|
|
|
# run cvMixChannels and check that the result is as expected.
|
|
|
|
|
|
|
|
random.seed(1)
|
|
|
|
|
|
|
|
for rows in [1,2,4,13,64,1000]:
|
|
|
|
for cols in [1,2,4,13,64,1000]:
|
|
|
|
for loop in range(5):
|
|
|
|
sources = [random.choice([1, 2, 3, 4]) for i in range(8)]
|
|
|
|
dests = [random.choice([1, 2, 3, 4]) for i in range(8)]
|
|
|
|
# make sure that fromTo does not have duplicates in dests, otherwise the result is not determined
|
|
|
|
while 1:
|
|
|
|
fromTo = [(random.randrange(-1, sum(sources)), random.randrange(sum(dests))) for i in range(random.randrange(1, 30))]
|
|
|
|
dests_set = list(set([j for (i, j) in fromTo]))
|
|
|
|
if len(dests_set) == len(dests):
|
|
|
|
break
|
|
|
|
|
|
|
|
# print sources
|
|
|
|
# print dests
|
|
|
|
# print fromTo
|
|
|
|
|
|
|
|
def CV_8UC(n):
|
|
|
|
return [cv.CV_8UC1, cv.CV_8UC2, cv.CV_8UC3, cv.CV_8UC4][n-1]
|
|
|
|
source_m = [cv.CreateMat(rows, cols, CV_8UC(c)) for c in sources]
|
|
|
|
dest_m = [cv.CreateMat(rows, cols, CV_8UC(c)) for c in dests]
|
|
|
|
|
|
|
|
def m00(m):
|
|
|
|
# return the contents of the N channel mat m[0,0] as a N-length list
|
|
|
|
chans = cv.CV_MAT_CN(cv.GetElemType(m))
|
|
|
|
if chans == 1:
|
|
|
|
return [m[0,0]]
|
|
|
|
else:
|
|
|
|
return list(m[0,0])[:chans]
|
|
|
|
|
|
|
|
# Sources numbered from 50, destinations numbered from 100
|
|
|
|
|
|
|
|
for i in range(len(sources)):
|
|
|
|
s = sum(sources[:i]) + 50
|
|
|
|
cv.Set(source_m[i], (s, s+1, s+2, s+3))
|
|
|
|
self.assertEqual(m00(source_m[i]), [s, s+1, s+2, s+3][:sources[i]])
|
|
|
|
|
|
|
|
for i in range(len(dests)):
|
|
|
|
s = sum(dests[:i]) + 100
|
|
|
|
cv.Set(dest_m[i], (s, s+1, s+2, s+3))
|
|
|
|
self.assertEqual(m00(dest_m[i]), [s, s+1, s+2, s+3][:dests[i]])
|
|
|
|
|
|
|
|
# now run the sanity check
|
|
|
|
|
|
|
|
for i in range(len(sources)):
|
|
|
|
s = sum(sources[:i]) + 50
|
|
|
|
self.assertEqual(m00(source_m[i]), [s, s+1, s+2, s+3][:sources[i]])
|
|
|
|
|
|
|
|
for i in range(len(dests)):
|
|
|
|
s = sum(dests[:i]) + 100
|
|
|
|
self.assertEqual(m00(dest_m[i]), [s, s+1, s+2, s+3][:dests[i]])
|
|
|
|
|
|
|
|
cv.MixChannels(source_m, dest_m, fromTo)
|
|
|
|
|
|
|
|
expected = range(100, 100 + sum(dests))
|
|
|
|
for (i, j) in fromTo:
|
|
|
|
if i == -1:
|
|
|
|
expected[j] = 0.0
|
|
|
|
else:
|
|
|
|
expected[j] = 50 + i
|
|
|
|
|
|
|
|
actual = sum([m00(m) for m in dest_m], [])
|
|
|
|
self.assertEqual(sum([m00(m) for m in dest_m], []), expected)
|
|
|
|
|
|
|
|
def test_allocs(self):
|
|
|
|
mats = [ 0 for i in range(20) ]
|
|
|
|
for i in range(1000):
|
|
|
|
m = cv.CreateMat(random.randrange(10, 512), random.randrange(10, 512), cv.CV_8UC1)
|
|
|
|
j = random.randrange(len(mats))
|
|
|
|
mats[j] = m
|
|
|
|
cv.SetZero(m)
|
|
|
|
|
|
|
|
def test_access(self):
|
|
|
|
cnames = { 1:cv.CV_32FC1, 2:cv.CV_32FC2, 3:cv.CV_32FC3, 4:cv.CV_32FC4 }
|
|
|
|
|
|
|
|
for w in range(1,11):
|
|
|
|
for h in range(2,11):
|
|
|
|
for c in [1,2]:
|
|
|
|
for o in [ cv.CreateMat(h, w, cnames[c]), cv.CreateImage((w,h), cv.IPL_DEPTH_32F, c) ][1:]:
|
|
|
|
pattern = [ (i,j) for i in range(w) for j in range(h) ]
|
|
|
|
random.shuffle(pattern)
|
|
|
|
for k,(i,j) in enumerate(pattern):
|
|
|
|
if c == 1:
|
|
|
|
o[j,i] = k
|
|
|
|
else:
|
|
|
|
o[j,i] = (k,) * c
|
|
|
|
for k,(i,j) in enumerate(pattern):
|
|
|
|
if c == 1:
|
|
|
|
self.assert_(o[j,i] == k)
|
|
|
|
else:
|
|
|
|
self.assert_(o[j,i] == (k,)*c)
|
|
|
|
|
|
|
|
test_mat = cv.CreateMat(2, 3, cv.CV_32FC1)
|
|
|
|
cv.SetData(test_mat, array.array('f', range(6)), 12)
|
|
|
|
self.assertEqual(cv.GetDims(test_mat[0]), (1, 3))
|
|
|
|
self.assertEqual(cv.GetDims(test_mat[1]), (1, 3))
|
|
|
|
self.assertEqual(cv.GetDims(test_mat[0:1]), (1, 3))
|
|
|
|
self.assertEqual(cv.GetDims(test_mat[1:2]), (1, 3))
|
|
|
|
self.assertEqual(cv.GetDims(test_mat[-1:]), (1, 3))
|
|
|
|
self.assertEqual(cv.GetDims(test_mat[-1]), (1, 3))
|
|
|
|
|
|
|
|
def xxxtest_corners(self):
|
|
|
|
a = cv.LoadImage("foo-mono.png", 0)
|
|
|
|
cv.AdaptiveThreshold(a, a, 255, param1=5)
|
|
|
|
scribble = cv.CreateImage(cv.GetSize(a), 8, 3)
|
|
|
|
cv.CvtColor(a, scribble, cv.CV_GRAY2BGR)
|
|
|
|
if 0:
|
|
|
|
eig_image = cv.CreateImage(cv.GetSize(a), cv.IPL_DEPTH_32F, 1)
|
|
|
|
temp_image = cv.CreateImage(cv.GetSize(a), cv.IPL_DEPTH_32F, 1)
|
|
|
|
pts = cv.GoodFeaturesToTrack(a, eig_image, temp_image, 100, 0.04, 2, use_harris=1)
|
|
|
|
for p in pts:
|
|
|
|
cv.Circle( scribble, p, 1, cv.RGB(255,0,0), -1 )
|
|
|
|
self.snap(scribble)
|
|
|
|
canny = cv.CreateImage(cv.GetSize(a), 8, 1)
|
|
|
|
cv.SubRS(a, 255, canny)
|
|
|
|
self.snap(canny)
|
|
|
|
li = cv.HoughLines2(canny,
|
|
|
|
cv.CreateMemStorage(),
|
|
|
|
cv.CV_HOUGH_STANDARD,
|
|
|
|
1,
|
|
|
|
math.pi/180,
|
|
|
|
60,
|
|
|
|
0,
|
|
|
|
0)
|
|
|
|
for (rho,theta) in li:
|
|
|
|
print rho,theta
|
|
|
|
c = math.cos(theta)
|
|
|
|
s = math.sin(theta)
|
|
|
|
x0 = c*rho
|
|
|
|
y0 = s*rho
|
|
|
|
cv.Line(scribble,
|
|
|
|
(x0 + 1000*(-s), y0 + 1000*c),
|
|
|
|
(x0 + -1000*(-s), y0 - 1000*c),
|
|
|
|
(0,255,0))
|
|
|
|
self.snap(scribble)
|
|
|
|
|
|
|
|
def test_calibration(self):
|
|
|
|
|
|
|
|
def get_corners(mono, refine = False):
|
|
|
|
(ok, corners) = cv.FindChessboardCorners(mono, (num_x_ints, num_y_ints), cv.CV_CALIB_CB_ADAPTIVE_THRESH | cv.CV_CALIB_CB_NORMALIZE_IMAGE)
|
|
|
|
if refine and ok:
|
|
|
|
corners = cv.FindCornerSubPix(mono, corners, (5,5), (-1,-1), ( cv.CV_TERMCRIT_EPS+cv.CV_TERMCRIT_ITER, 30, 0.1 ))
|
|
|
|
return (ok, corners)
|
|
|
|
|
|
|
|
def mk_object_points(nimages, squaresize = 1):
|
|
|
|
opts = cv.CreateMat(nimages * num_pts, 3, cv.CV_32FC1)
|
|
|
|
for i in range(nimages):
|
|
|
|
for j in range(num_pts):
|
|
|
|
opts[i * num_pts + j, 0] = (j / num_x_ints) * squaresize
|
|
|
|
opts[i * num_pts + j, 1] = (j % num_x_ints) * squaresize
|
|
|
|
opts[i * num_pts + j, 2] = 0
|
|
|
|
return opts
|
|
|
|
|
|
|
|
def mk_image_points(goodcorners):
|
|
|
|
ipts = cv.CreateMat(len(goodcorners) * num_pts, 2, cv.CV_32FC1)
|
|
|
|
for (i, co) in enumerate(goodcorners):
|
|
|
|
for j in range(num_pts):
|
|
|
|
ipts[i * num_pts + j, 0] = co[j][0]
|
|
|
|
ipts[i * num_pts + j, 1] = co[j][1]
|
|
|
|
return ipts
|
|
|
|
|
|
|
|
def mk_point_counts(nimages):
|
|
|
|
npts = cv.CreateMat(nimages, 1, cv.CV_32SC1)
|
|
|
|
for i in range(nimages):
|
|
|
|
npts[i, 0] = num_pts
|
|
|
|
return npts
|
|
|
|
|
|
|
|
def cvmat_iterator(cvmat):
|
|
|
|
for i in range(cvmat.rows):
|
|
|
|
for j in range(cvmat.cols):
|
|
|
|
yield cvmat[i,j]
|
|
|
|
|
|
|
|
def image_from_archive(tar, name):
|
|
|
|
member = tar.getmember(name)
|
|
|
|
filedata = tar.extractfile(member).read()
|
|
|
|
imagefiledata = cv.CreateMat(1, len(filedata), cv.CV_8UC1)
|
|
|
|
cv.SetData(imagefiledata, filedata, len(filedata))
|
|
|
|
return cv.DecodeImageM(imagefiledata)
|
|
|
|
|
|
|
|
urllib.urlretrieve("http://opencv.itseez.com/data/camera_calibration.tar.gz", "camera_calibration.tar.gz")
|
|
|
|
tf = tarfile.open("camera_calibration.tar.gz")
|
|
|
|
|
|
|
|
num_x_ints = 8
|
|
|
|
num_y_ints = 6
|
|
|
|
num_pts = num_x_ints * num_y_ints
|
|
|
|
|
|
|
|
leftimages = [image_from_archive(tf, "wide/left%04d.pgm" % i) for i in range(3, 15)]
|
|
|
|
size = cv.GetSize(leftimages[0])
|
|
|
|
|
|
|
|
# Monocular test
|
|
|
|
|
|
|
|
if True:
|
|
|
|
corners = [get_corners(i) for i in leftimages]
|
|
|
|
goodcorners = [co for (im, (ok, co)) in zip(leftimages, corners) if ok]
|
|
|
|
|
|
|
|
ipts = mk_image_points(goodcorners)
|
|
|
|
opts = mk_object_points(len(goodcorners), .1)
|
|
|
|
npts = mk_point_counts(len(goodcorners))
|
|
|
|
|
|
|
|
intrinsics = cv.CreateMat(3, 3, cv.CV_64FC1)
|
|
|
|
distortion = cv.CreateMat(4, 1, cv.CV_64FC1)
|
|
|
|
cv.SetZero(intrinsics)
|
|
|
|
cv.SetZero(distortion)
|
|
|
|
# focal lengths have 1/1 ratio
|
|
|
|
intrinsics[0,0] = 1.0
|
|
|
|
intrinsics[1,1] = 1.0
|
|
|
|
cv.CalibrateCamera2(opts, ipts, npts,
|
|
|
|
cv.GetSize(leftimages[0]),
|
|
|
|
intrinsics,
|
|
|
|
distortion,
|
|
|
|
cv.CreateMat(len(goodcorners), 3, cv.CV_32FC1),
|
|
|
|
cv.CreateMat(len(goodcorners), 3, cv.CV_32FC1),
|
|
|
|
flags = 0) # cv.CV_CALIB_ZERO_TANGENT_DIST)
|
|
|
|
# print "D =", list(cvmat_iterator(distortion))
|
|
|
|
# print "K =", list(cvmat_iterator(intrinsics))
|
|
|
|
|
|
|
|
newK = cv.CreateMat(3, 3, cv.CV_64FC1)
|
|
|
|
cv.GetOptimalNewCameraMatrix(intrinsics, distortion, size, 1.0, newK)
|
|
|
|
# print "newK =", list(cvmat_iterator(newK))
|
|
|
|
|
|
|
|
mapx = cv.CreateImage((640, 480), cv.IPL_DEPTH_32F, 1)
|
|
|
|
mapy = cv.CreateImage((640, 480), cv.IPL_DEPTH_32F, 1)
|
|
|
|
for K in [ intrinsics, newK ]:
|
|
|
|
cv.InitUndistortMap(K, distortion, mapx, mapy)
|
|
|
|
for img in leftimages[:1]:
|
|
|
|
r = cv.CloneMat(img)
|
|
|
|
cv.Remap(img, r, mapx, mapy)
|
|
|
|
# cv.ShowImage("snap", r)
|
|
|
|
# cv.WaitKey()
|
|
|
|
|
|
|
|
rightimages = [image_from_archive(tf, "wide/right%04d.pgm" % i) for i in range(3, 15)]
|
|
|
|
|
|
|
|
# Stereo test
|
|
|
|
|
|
|
|
if True:
|
|
|
|
lcorners = [get_corners(i) for i in leftimages]
|
|
|
|
rcorners = [get_corners(i) for i in rightimages]
|
|
|
|
good = [(lco, rco) for ((lok, lco), (rok, rco)) in zip(lcorners, rcorners) if (lok and rok)]
|
|
|
|
|
|
|
|
lipts = mk_image_points([l for (l, r) in good])
|
|
|
|
ripts = mk_image_points([r for (l, r) in good])
|
|
|
|
opts = mk_object_points(len(good), .108)
|
|
|
|
npts = mk_point_counts(len(good))
|
|
|
|
|
|
|
|
flags = cv.CV_CALIB_FIX_ASPECT_RATIO | cv.CV_CALIB_FIX_INTRINSIC
|
|
|
|
flags = cv.CV_CALIB_SAME_FOCAL_LENGTH + cv.CV_CALIB_FIX_PRINCIPAL_POINT + cv.CV_CALIB_ZERO_TANGENT_DIST
|
|
|
|
flags = 0
|
|
|
|
|
|
|
|
T = cv.CreateMat(3, 1, cv.CV_64FC1)
|
|
|
|
R = cv.CreateMat(3, 3, cv.CV_64FC1)
|
|
|
|
lintrinsics = cv.CreateMat(3, 3, cv.CV_64FC1)
|
|
|
|
ldistortion = cv.CreateMat(4, 1, cv.CV_64FC1)
|
|
|
|
rintrinsics = cv.CreateMat(3, 3, cv.CV_64FC1)
|
|
|
|
rdistortion = cv.CreateMat(4, 1, cv.CV_64FC1)
|
|
|
|
lR = cv.CreateMat(3, 3, cv.CV_64FC1)
|
|
|
|
rR = cv.CreateMat(3, 3, cv.CV_64FC1)
|
|
|
|
lP = cv.CreateMat(3, 4, cv.CV_64FC1)
|
|
|
|
rP = cv.CreateMat(3, 4, cv.CV_64FC1)
|
|
|
|
lmapx = cv.CreateImage(size, cv.IPL_DEPTH_32F, 1)
|
|
|
|
lmapy = cv.CreateImage(size, cv.IPL_DEPTH_32F, 1)
|
|
|
|
rmapx = cv.CreateImage(size, cv.IPL_DEPTH_32F, 1)
|
|
|
|
rmapy = cv.CreateImage(size, cv.IPL_DEPTH_32F, 1)
|
|
|
|
|
|
|
|
cv.SetIdentity(lintrinsics)
|
|
|
|
cv.SetIdentity(rintrinsics)
|
|
|
|
lintrinsics[0,2] = size[0] * 0.5
|
|
|
|
lintrinsics[1,2] = size[1] * 0.5
|
|
|
|
rintrinsics[0,2] = size[0] * 0.5
|
|
|
|
rintrinsics[1,2] = size[1] * 0.5
|
|
|
|
cv.SetZero(ldistortion)
|
|
|
|
cv.SetZero(rdistortion)
|
|
|
|
|
|
|
|
cv.StereoCalibrate(opts, lipts, ripts, npts,
|
|
|
|
lintrinsics, ldistortion,
|
|
|
|
rintrinsics, rdistortion,
|
|
|
|
size,
|
|
|
|
R, # R
|
|
|
|
T, # T
|
|
|
|
cv.CreateMat(3, 3, cv.CV_32FC1), # E
|
|
|
|
cv.CreateMat(3, 3, cv.CV_32FC1), # F
|
|
|
|
(cv.CV_TERMCRIT_ITER + cv.CV_TERMCRIT_EPS, 30, 1e-5),
|
|
|
|
flags)
|
|
|
|
|
|
|
|
for a in [-1, 0, 1]:
|
|
|
|
cv.StereoRectify(lintrinsics,
|
|
|
|
rintrinsics,
|
|
|
|
ldistortion,
|
|
|
|
rdistortion,
|
|
|
|
size,
|
|
|
|
R,
|
|
|
|
T,
|
|
|
|
lR, rR, lP, rP,
|
|
|
|
alpha = a)
|
|
|
|
|
|
|
|
cv.InitUndistortRectifyMap(lintrinsics, ldistortion, lR, lP, lmapx, lmapy)
|
|
|
|
cv.InitUndistortRectifyMap(rintrinsics, rdistortion, rR, rP, rmapx, rmapy)
|
|
|
|
|
|
|
|
for l,r in zip(leftimages, rightimages)[:1]:
|
|
|
|
l_ = cv.CloneMat(l)
|
|
|
|
r_ = cv.CloneMat(r)
|
|
|
|
cv.Remap(l, l_, lmapx, lmapy)
|
|
|
|
cv.Remap(r, r_, rmapx, rmapy)
|
|
|
|
# cv.ShowImage("snap", l_)
|
|
|
|
# cv.WaitKey()
|
|
|
|
|
|
|
|
|
|
|
|
def xxx_test_Disparity(self):
|
|
|
|
print
|
|
|
|
for t in ["8U", "8S", "16U", "16S", "32S", "32F", "64F" ]:
|
|
|
|
for c in [1,2,3,4]:
|
|
|
|
nm = "%sC%d" % (t, c)
|
|
|
|
print "int32 CV_%s=%d" % (nm, eval("cv.CV_%s" % nm))
|
|
|
|
return
|
|
|
|
integral = cv.CreateImage((641,481), cv.IPL_DEPTH_32S, 1)
|
|
|
|
L = cv.LoadImage("f0-left.png", 0)
|
|
|
|
R = cv.LoadImage("f0-right.png", 0)
|
|
|
|
d = cv.CreateImage(cv.GetSize(L), cv.IPL_DEPTH_8U, 1)
|
|
|
|
Rn = cv.CreateImage(cv.GetSize(L), cv.IPL_DEPTH_8U, 1)
|
|
|
|
started = time.time()
|
|
|
|
for i in range(100):
|
|
|
|
cv.AbsDiff(L, R, d)
|
|
|
|
cv.Integral(d, integral)
|
|
|
|
cv.SetImageROI(R, (1, 1, 639, 479))
|
|
|
|
cv.SetImageROI(Rn, (0, 0, 639, 479))
|
|
|
|
cv.Copy(R, Rn)
|
|
|
|
R = Rn
|
|
|
|
cv.ResetImageROI(R)
|
|
|
|
print 1e3 * (time.time() - started) / 100, "ms"
|
|
|
|
# self.snap(d)
|
|
|
|
|
|
|
|
def local_test_lk(self):
|
|
|
|
seq = [cv.LoadImage("track/%06d.png" % i, 0) for i in range(40)]
|
|
|
|
crit = (cv.CV_TERMCRIT_ITER, 100, 0.1)
|
|
|
|
crit = (cv.CV_TERMCRIT_EPS, 0, 0.001)
|
|
|
|
|
|
|
|
for i in range(1,40):
|
|
|
|
r = cv.CalcOpticalFlowPyrLK(seq[0], seq[i], None, None, [(32,32)], (7,7), 0, crit, 0)
|
|
|
|
pos = r[0][0]
|
|
|
|
#print pos, r[2]
|
|
|
|
|
|
|
|
a = cv.CreateImage((1024,1024), 8, 1)
|
|
|
|
b = cv.CreateImage((1024,1024), 8, 1)
|
|
|
|
cv.Resize(seq[0], a, cv.CV_INTER_NN)
|
|
|
|
cv.Resize(seq[i], b, cv.CV_INTER_NN)
|
|
|
|
cv.Line(a, (0, 512), (1024, 512), 255)
|
|
|
|
cv.Line(a, (512,0), (512,1024), 255)
|
|
|
|
x,y = [int(c) for c in pos]
|
|
|
|
cv.Line(b, (0, y*16), (1024, y*16), 255)
|
|
|
|
cv.Line(b, (x*16,0), (x*16,1024), 255)
|
|
|
|
#self.snapL([a,b])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def local_test_Haar(self):
|
|
|
|
import os
|
|
|
|
hcfile = os.environ['OPENCV_ROOT'] + '/share/opencv/haarcascades/haarcascade_frontalface_default.xml'
|
|
|
|
hc = cv.Load(hcfile)
|
|
|
|
img = cv.LoadImage('Stu.jpg', 0)
|
|
|
|
faces = cv.HaarDetectObjects(img, hc, cv.CreateMemStorage())
|
|
|
|
self.assert_(len(faces) > 0)
|
|
|
|
for (x,y,w,h),n in faces:
|
|
|
|
cv.Rectangle(img, (x,y), (x+w,y+h), 255)
|
|
|
|
#self.snap(img)
|
|
|
|
|
|
|
|
def test_create(self):
|
|
|
|
#""" CvCreateImage, CvCreateMat and the header-only form """
|
|
|
|
for (w,h) in [ (320,400), (640,480), (1024, 768) ]:
|
|
|
|
data = "z" * (w * h)
|
|
|
|
|
|
|
|
im = cv.CreateImage((w,h), 8, 1)
|
|
|
|
cv.SetData(im, data, w)
|
|
|
|
im2 = cv.CreateImageHeader((w,h), 8, 1)
|
|
|
|
cv.SetData(im2, data, w)
|
|
|
|
self.assertSame(im, im2)
|
|
|
|
|
|
|
|
m = cv.CreateMat(h, w, cv.CV_8UC1)
|
|
|
|
cv.SetData(m, data, w)
|
|
|
|
m2 = cv.CreateMatHeader(h, w, cv.CV_8UC1)
|
|
|
|
cv.SetData(m2, data, w)
|
|
|
|
self.assertSame(m, m2)
|
|
|
|
|
|
|
|
self.assertSame(im, m)
|
|
|
|
self.assertSame(im2, m2)
|
|
|
|
|
|
|
|
|
|
|
|
def test_casts(self):
|
|
|
|
im = cv.GetImage(self.get_sample("samples/c/lena.jpg", 0))
|
|
|
|
data = im.tostring()
|
|
|
|
cv.SetData(im, data, cv.GetSize(im)[0])
|
|
|
|
|
|
|
|
start_count = sys.getrefcount(data)
|
|
|
|
|
|
|
|
# Conversions should produce same data
|
|
|
|
self.assertSame(im, cv.GetImage(im))
|
|
|
|
m = cv.GetMat(im)
|
|
|
|
self.assertSame(im, m)
|
|
|
|
self.assertSame(m, cv.GetImage(m))
|
|
|
|
im2 = cv.GetImage(m)
|
|
|
|
self.assertSame(im, im2)
|
|
|
|
|
|
|
|
self.assertEqual(sys.getrefcount(data), start_count + 2)
|
|
|
|
del im2
|
|
|
|
self.assertEqual(sys.getrefcount(data), start_count + 1)
|
|
|
|
del m
|
|
|
|
self.assertEqual(sys.getrefcount(data), start_count)
|
|
|
|
del im
|
|
|
|
self.assertEqual(sys.getrefcount(data), start_count - 1)
|
|
|
|
|
|
|
|
def test_morphological(self):
|
|
|
|
im = cv.CreateImage((128, 128), cv.IPL_DEPTH_8U, 1)
|
|
|
|
cv.Resize(cv.GetImage(self.get_sample("samples/c/lena.jpg", 0)), im)
|
|
|
|
dst = cv.CloneImage(im)
|
|
|
|
|
|
|
|
# Check defaults by asserting that all these operations produce the same image
|
|
|
|
funs = [
|
|
|
|
lambda: cv.Dilate(im, dst),
|
|
|
|
lambda: cv.Dilate(im, dst, None),
|
|
|
|
lambda: cv.Dilate(im, dst, iterations = 1),
|
|
|
|
lambda: cv.Dilate(im, dst, element = None),
|
|
|
|
lambda: cv.Dilate(im, dst, iterations = 1, element = None),
|
|
|
|
lambda: cv.Dilate(im, dst, element = None, iterations = 1),
|
|
|
|
]
|
|
|
|
src_h = self.hashimg(im)
|
|
|
|
hashes = set()
|
|
|
|
for f in funs:
|
|
|
|
f()
|
|
|
|
hashes.add(self.hashimg(dst))
|
|
|
|
self.assertNotEqual(src_h, self.hashimg(dst))
|
|
|
|
# Source image should be untouched
|
|
|
|
self.assertEqual(self.hashimg(im), src_h)
|
|
|
|
# All results should be same
|
|
|
|
self.assertEqual(len(hashes), 1)
|
|
|
|
|
|
|
|
# self.snap(dst)
|
|
|
|
shapes = [eval("cv.CV_SHAPE_%s" % s) for s in ['RECT', 'CROSS', 'ELLIPSE']]
|
|
|
|
elements = [cv.CreateStructuringElementEx(sz, sz, sz / 2 + 1, sz / 2 + 1, shape) for sz in [3, 4, 7, 20] for shape in shapes]
|
|
|
|
elements += [cv.CreateStructuringElementEx(7, 7, 3, 3, cv.CV_SHAPE_CUSTOM, [1] * 49)]
|
|
|
|
for e in elements:
|
|
|
|
for iter in [1, 2]:
|
|
|
|
cv.Dilate(im, dst, e, iter)
|
|
|
|
cv.Erode(im, dst, e, iter)
|
|
|
|
temp = cv.CloneImage(im)
|
|
|
|
for op in ["OPEN", "CLOSE", "GRADIENT", "TOPHAT", "BLACKHAT"]:
|
|
|
|
cv.MorphologyEx(im, dst, temp, e, eval("cv.CV_MOP_%s" % op), iter)
|
|
|
|
|
|
|
|
def test_getmat_nd(self):
|
|
|
|
# 1D CvMatND should yield (N,1) CvMat
|
|
|
|
matnd = cv.CreateMatND([13], cv.CV_8UC1)
|
|
|
|
self.assertEqual(cv.GetDims(cv.GetMat(matnd, allowND = True)), (13, 1))
|
|
|
|
|
|
|
|
# 2D CvMatND should yield 2D CvMat
|
|
|
|
matnd = cv.CreateMatND([11, 12], cv.CV_8UC1)
|
|
|
|
self.assertEqual(cv.GetDims(cv.GetMat(matnd, allowND = True)), (11, 12))
|
|
|
|
|
|
|
|
if 0: # XXX - ticket #149
|
|
|
|
# 3D CvMatND should yield (N,1) CvMat
|
|
|
|
matnd = cv.CreateMatND([7, 8, 9], cv.CV_8UC1)
|
|
|
|
self.assertEqual(cv.GetDims(cv.GetMat(matnd, allowND = True)), (7 * 8 * 9, 1))
|
|
|
|
|
|
|
|
def test_clipline(self):
|
|
|
|
self.assert_(cv.ClipLine((100,100), (-100,0), (500,0)) == ((0,0), (99,0)))
|
|
|
|
self.assert_(cv.ClipLine((100,100), (-100,0), (-200,0)) == None)
|
|
|
|
|
|
|
|
def test_smoke_image_processing(self):
|
|
|
|
src = self.get_sample("samples/c/lena.jpg", cv.CV_LOAD_IMAGE_GRAYSCALE)
|
|
|
|
#dst = cv.CloneImage(src)
|
|
|
|
for aperture_size in [1, 3, 5, 7]:
|
|
|
|
dst_16s = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_16S, 1)
|
|
|
|
dst_32f = cv.CreateImage(cv.GetSize(src), cv.IPL_DEPTH_32F, 1)
|
|
|
|
|
|
|
|
cv.Sobel(src, dst_16s, 1, 1, aperture_size)
|
|
|
|
cv.Laplace(src, dst_16s, aperture_size)
|
|
|
|
cv.PreCornerDetect(src, dst_32f)
|
|
|
|
eigendst = cv.CreateImage((6*cv.GetSize(src)[0], cv.GetSize(src)[1]), cv.IPL_DEPTH_32F, 1)
|
|
|
|
cv.CornerEigenValsAndVecs(src, eigendst, 8, aperture_size)
|
|
|
|
cv.CornerMinEigenVal(src, dst_32f, 8, aperture_size)
|
|
|
|
cv.CornerHarris(src, dst_32f, 8, aperture_size)
|
|
|
|
cv.CornerHarris(src, dst_32f, 8, aperture_size, 0.1)
|
|
|
|
|
|
|
|
#self.snap(dst)
|
|
|
|
|
|
|
|
def test_fitline(self):
|
|
|
|
cv.FitLine([ (1,1), (10,10) ], cv.CV_DIST_L2, 0, 0.01, 0.01)
|
|
|
|
cv.FitLine([ (1,1,1), (10,10,10) ], cv.CV_DIST_L2, 0, 0.01, 0.01)
|
|
|
|
a = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
eig_image = cv.CreateImage(cv.GetSize(a), cv.IPL_DEPTH_32F, 1)
|
|
|
|
temp_image = cv.CreateImage(cv.GetSize(a), cv.IPL_DEPTH_32F, 1)
|
|
|
|
pts = cv.GoodFeaturesToTrack(a, eig_image, temp_image, 100, 0.04, 2, useHarris=1)
|
|
|
|
hull = cv.ConvexHull2(pts, cv.CreateMemStorage(), return_points = 1)
|
|
|
|
cv.FitLine(hull, cv.CV_DIST_L2, 0, 0.01, 0.01)
|
|
|
|
|
|
|
|
def test_moments(self):
|
|
|
|
im = self.get_sample("samples/c/lena.jpg", 0)
|
|
|
|
mo = cv.Moments(im)
|
|
|
|
for fld in ["m00", "m10", "m01", "m20", "m11", "m02", "m30", "m21", "m12", "m03", "mu20", "mu11", "mu02", "mu30", "mu21", "mu12", "mu03", "inv_sqrt_m00"]:
|
|
|
|
self.assert_(isinstance(getattr(mo, fld), float))
|
|
|
|
x = getattr(mo, fld)
|
|
|
|
self.assert_(isinstance(x, float))
|
|
|
|
|
|
|
|
orders = []
|
|
|
|
for x_order in range(4):
|
|
|
|
for y_order in range(4 - x_order):
|
|
|
|
orders.append((x_order, y_order))
|
|
|
|
|
|
|
|
# Just a smoke test for these three functions
|
|
|
|
[ cv.GetSpatialMoment(mo, xo, yo) for (xo,yo) in orders ]
|
|
|
|
[ cv.GetCentralMoment(mo, xo, yo) for (xo,yo) in orders ]
|
|
|
|
[ cv.GetNormalizedCentralMoment(mo, xo, yo) for (xo,yo) in orders ]
|
|
|
|
|
|
|
|
# Hu Moments we can do slightly better. Check that the first
|
|
|
|
# six are invariant wrt image reflection, and that the 7th
|
|
|
|
# is negated.
|
|
|
|
|
|
|
|
hu0 = cv.GetHuMoments(cv.Moments(im))
|
|
|
|
cv.Flip(im, im, 1)
|
|
|
|
hu1 = cv.GetHuMoments(cv.Moments(im))
|
|
|
|
self.assert_(len(hu0) == 7)
|
|
|
|
self.assert_(len(hu1) == 7)
|
|
|
|
for i in range(5):
|
|
|
|
self.assert_(abs(hu0[i] - hu1[i]) < 1e-6)
|
|
|
|
self.assert_(abs(hu0[i] + hu1[i]) < 1e-6)
|
|
|
|
|
|
|
|
def test_encode(self):
|
|
|
|
im = self.get_sample("samples/c/lena.jpg", 1)
|
|
|
|
jpeg = cv.EncodeImage(".jpeg", im)
|
|
|
|
|
|
|
|
# Smoke jpeg compression at various qualities
|
|
|
|
sizes = dict([(qual, cv.EncodeImage(".jpeg", im, [cv.CV_IMWRITE_JPEG_QUALITY, qual]).cols) for qual in range(5, 100, 5)])
|
|
|
|
|
|
|
|
# Check that the default QUALITY is 95
|
|
|
|
self.assertEqual(cv.EncodeImage(".jpeg", im).cols, sizes[95])
|
|
|
|
|
|
|
|
# Check that the 'round-trip' gives an image of the same size
|
|
|
|
round_trip = cv.DecodeImage(cv.EncodeImage(".jpeg", im, [cv.CV_IMWRITE_JPEG_QUALITY, 10]))
|
|
|
|
self.assert_(cv.GetSize(round_trip) == cv.GetSize(im))
|
|
|
|
|
|
|
|
def test_reduce(self):
|
|
|
|
srcmat = cv.CreateMat(2, 3, cv.CV_32FC1)
|
|
|
|
# 0 1 2
|
|
|
|
# 3 4 5
|
|
|
|
srcmat[0,0] = 0
|
|
|
|
srcmat[0,1] = 1
|
|
|
|
srcmat[0,2] = 2
|
|
|
|
srcmat[1,0] = 3
|
|
|
|
srcmat[1,1] = 4
|
|
|
|
srcmat[1,2] = 5
|
|
|
|
def doreduce(siz, rfunc):
|
|
|
|
dst = cv.CreateMat(siz[0], siz[1], cv.CV_32FC1)
|
|
|
|
rfunc(dst)
|
|
|
|
if siz[0] != 1:
|
|
|
|
return [dst[i,0] for i in range(siz[0])]
|
|
|
|
else:
|
|
|
|
return [dst[0,i] for i in range(siz[1])]
|
|
|
|
|
|
|
|
# exercise dim
|
|
|
|
self.assertEqual(doreduce((1,3), lambda dst: cv.Reduce(srcmat, dst)), [3, 5, 7])
|
|
|
|
self.assertEqual(doreduce((1,3), lambda dst: cv.Reduce(srcmat, dst, -1)), [3, 5, 7])
|
|
|
|
self.assertEqual(doreduce((1,3), lambda dst: cv.Reduce(srcmat, dst, 0)), [3, 5, 7])
|
|
|
|
self.assertEqual(doreduce((2,1), lambda dst: cv.Reduce(srcmat, dst, 1)), [3, 12])
|
|
|
|
|
|
|
|
# exercise op
|
|
|
|
self.assertEqual(doreduce((1,3), lambda dst: cv.Reduce(srcmat, dst, op = cv.CV_REDUCE_SUM)), [3, 5, 7])
|
|
|
|
self.assertEqual(doreduce((1,3), lambda dst: cv.Reduce(srcmat, dst, op = cv.CV_REDUCE_AVG)), [1.5, 2.5, 3.5])
|
|
|
|
self.assertEqual(doreduce((1,3), lambda dst: cv.Reduce(srcmat, dst, op = cv.CV_REDUCE_MAX)), [3, 4, 5])
|
|
|
|
self.assertEqual(doreduce((1,3), lambda dst: cv.Reduce(srcmat, dst, op = cv.CV_REDUCE_MIN)), [0, 1, 2])
|
|
|
|
|
|
|
|
# exercise both dim and op
|
|
|
|
self.assertEqual(doreduce((1,3), lambda dst: cv.Reduce(srcmat, dst, 0, cv.CV_REDUCE_MAX)), [3, 4, 5])
|
|
|
|
self.assertEqual(doreduce((2,1), lambda dst: cv.Reduce(srcmat, dst, 1, cv.CV_REDUCE_MAX)), [2, 5])
|
|
|
|
|
|
|
|
def test_operations(self):
|
|
|
|
class Im:
|
|
|
|
|
|
|
|
def __init__(self, data = None):
|
|
|
|
self.m = cv.CreateMat(1, 32, cv.CV_32FC1)
|
|
|
|
if data:
|
|
|
|
cv.SetData(self.m, array.array('f', data), 128)
|
|
|
|
|
|
|
|
def __add__(self, other):
|
|
|
|
r = Im()
|
|
|
|
if isinstance(other, Im):
|
|
|
|
cv.Add(self.m, other.m, r.m)
|
|
|
|
else:
|
|
|
|
cv.AddS(self.m, (other,), r.m)
|
|
|
|
return r
|
|
|
|
|
|
|
|
def __sub__(self, other):
|
|
|
|
r = Im()
|
|
|
|
if isinstance(other, Im):
|
|
|
|
cv.Sub(self.m, other.m, r.m)
|
|
|
|
else:
|
|
|
|
cv.SubS(self.m, (other,), r.m)
|
|
|
|
return r
|
|
|
|
|
|
|
|
def __rsub__(self, other):
|
|
|
|
r = Im()
|
|
|
|
cv.SubRS(self.m, (other,), r.m)
|
|
|
|
return r
|
|
|
|
|
|
|
|
def __mul__(self, other):
|
|
|
|
r = Im()
|
|
|
|
if isinstance(other, Im):
|
|
|
|
cv.Mul(self.m, other.m, r.m)
|
|
|
|
else:
|
|
|
|
cv.ConvertScale(self.m, r.m, other)
|
|
|
|
return r
|
|
|
|
|
|
|
|
def __rmul__(self, other):
|
|
|
|
r = Im()
|
|
|
|
cv.ConvertScale(self.m, r.m, other)
|
|
|
|
return r
|
|
|
|
|
|
|
|
def __div__(self, other):
|
|
|
|
r = Im()
|
|
|
|
if isinstance(other, Im):
|
|
|
|
cv.Div(self.m, other.m, r.m)
|
|
|
|
else:
|
|
|
|
cv.ConvertScale(self.m, r.m, 1.0 / other)
|
|
|
|
return r
|
|
|
|
|
|
|
|
def __pow__(self, other):
|
|
|
|
r = Im()
|
|
|
|
cv.Pow(self.m, r.m, other)
|
|
|
|
return r
|
|
|
|
|
|
|
|
def __abs__(self):
|
|
|
|
r = Im()
|
|
|
|
cv.Abs(self.m, r.m)
|
|
|
|
return r
|
|
|
|
|
|
|
|
def __getitem__(self, i):
|
|
|
|
return self.m[0,i]
|
|
|
|
|
|
|
|
def verify(op):
|
|
|
|
r = op(a, b)
|
|
|
|
for i in range(32):
|
|
|
|
expected = op(a[i], b[i])
|
|
|
|
self.assertAlmostEqual(expected, r[i], 4)
|
|
|
|
|
|
|
|
a = Im([random.randrange(1, 256) for i in range(32)])
|
|
|
|
b = Im([random.randrange(1, 256) for i in range(32)])
|
|
|
|
|
|
|
|
# simple operations first
|
|
|
|
verify(lambda x, y: x + y)
|
|
|
|
verify(lambda x, y: x + 3)
|
|
|
|
verify(lambda x, y: x + 0)
|
|
|
|
verify(lambda x, y: x + -8)
|
|
|
|
|
|
|
|
verify(lambda x, y: x - y)
|
|
|
|
verify(lambda x, y: x - 1)
|
|
|
|
verify(lambda x, y: 1 - x)
|
|
|
|
|
|
|
|
verify(lambda x, y: abs(x))
|
|
|
|
|
|
|
|
verify(lambda x, y: x * y)
|
|
|
|
verify(lambda x, y: x * 3)
|
|
|
|
|
|
|
|
verify(lambda x, y: x / y)
|
|
|
|
verify(lambda x, y: x / 2)
|
|
|
|
|
|
|
|
for p in [-2, -1, -0.5, -0.1, 0, 0.1, 0.5, 1, 2 ]:
|
|
|
|
verify(lambda x, y: (x ** p) + (y ** p))
|
|
|
|
|
|
|
|
# Combinations...
|
|
|
|
verify(lambda x, y: x - 4 * abs(y))
|
|
|
|
verify(lambda x, y: abs(y) / x)
|
|
|
|
|
|
|
|
# a polynomial
|
|
|
|
verify(lambda x, y: 2 * x + 3 * (y ** 0.5))
|
|
|
|
|
|
|
|
def temp_test(self):
|
|
|
|
cv.temp_test()
|
|
|
|
|
|
|
|
def failing_test_rand_GetStarKeypoints(self):
|
|
|
|
# GetStarKeypoints [<cvmat(type=4242400d rows=64 cols=64 step=512 )>, <cv.cvmemstorage object at 0xb7cc40d0>, (45, 0.73705234376883488, 0.64282591451367344, 0.1567738743689836, 3)]
|
|
|
|
print cv.CV_MAT_CN(0x4242400d)
|
|
|
|
mat = cv.CreateMat( 64, 64, cv.CV_32FC2)
|
|
|
|
cv.GetStarKeypoints(mat, cv.CreateMemStorage(), (45, 0.73705234376883488, 0.64282591451367344, 0.1567738743689836, 3))
|
|
|
|
print mat
|
|
|
|
|
|
|
|
def test_rand_PutText(self):
|
|
|
|
#""" Test for bug 2829336 """
|
|
|
|
mat = cv.CreateMat( 64, 64, cv.CV_8UC1)
|
|
|
|
font = cv.InitFont(cv.CV_FONT_HERSHEY_SIMPLEX, 1, 1)
|
|
|
|
cv.PutText(mat, chr(127), (20, 20), font, 255)
|
|
|
|
|
|
|
|
def failing_test_rand_FindNearestPoint2D(self):
|
|
|
|
subdiv = cv.CreateSubdivDelaunay2D((0,0,100,100), cv.CreateMemStorage())
|
|
|
|
cv.SubdivDelaunay2DInsert( subdiv, (50, 50))
|
|
|
|
cv.CalcSubdivVoronoi2D(subdiv)
|
|
|
|
print
|
|
|
|
for e in subdiv.edges:
|
|
|
|
print e,
|
|
|
|
print " ", cv.Subdiv2DEdgeOrg(e)
|
|
|
|
print " ", cv.Subdiv2DEdgeOrg(cv.Subdiv2DRotateEdge(e, 1)), cv.Subdiv2DEdgeDst(cv.Subdiv2DRotateEdge(e, 1))
|
|
|
|
print "nearest", cv.FindNearestPoint2D(subdiv, (1.0, 1.0))
|
|
|
|
|
|
|
|
class DocumentFragmentTests(OpenCVTests):
|
|
|
|
""" Test the fragments of code that are included in the documentation """
|
|
|
|
def setUp(self):
|
|
|
|
OpenCVTests.setUp(self)
|
|
|
|
sys.path.append(".")
|
|
|
|
|
|
|
|
def test_precornerdetect(self):
|
|
|
|
from precornerdetect import precornerdetect
|
|
|
|
im = self.get_sample("samples/cpp/right01.jpg", 0)
|
|
|
|
imf = cv.CreateMat(im.rows, im.cols, cv.CV_32FC1)
|
|
|
|
cv.ConvertScale(im, imf)
|
|
|
|
(r0,r1) = precornerdetect(imf)
|
|
|
|
for r in (r0, r1):
|
|
|
|
self.assertEqual(im.cols, r.cols)
|
|
|
|
self.assertEqual(im.rows, r.rows)
|
|
|
|
|
|
|
|
def test_findstereocorrespondence(self):
|
|
|
|
from findstereocorrespondence import findstereocorrespondence
|
|
|
|
(l,r) = [self.get_sample("samples/cpp/tsukuba_%s.png" % c, cv.CV_LOAD_IMAGE_GRAYSCALE) for c in "lr"]
|
|
|
|
|
|
|
|
(disparity_left, disparity_right) = findstereocorrespondence(l, r)
|
|
|
|
|
|
|
|
disparity_left_visual = cv.CreateMat(l.rows, l.cols, cv.CV_8U)
|
|
|
|
cv.ConvertScale(disparity_left, disparity_left_visual, -16)
|
|
|
|
# self.snap(disparity_left_visual)
|
|
|
|
|
|
|
|
def test_calchist(self):
|
|
|
|
from calchist import hs_histogram
|
|
|
|
i1 = self.get_sample("samples/c/lena.jpg")
|
|
|
|
i2 = self.get_sample("samples/cpp/building.jpg")
|
|
|
|
i3 = cv.CloneMat(i1)
|
|
|
|
cv.Flip(i3, i3, 1)
|
|
|
|
h1 = hs_histogram(i1)
|
|
|
|
h2 = hs_histogram(i2)
|
|
|
|
h3 = hs_histogram(i3)
|
|
|
|
self.assertEqual(self.hashimg(h1), self.hashimg(h3))
|
|
|
|
self.assertNotEqual(self.hashimg(h1), self.hashimg(h2))
|
|
|
|
|
|
|
|
class NewTests(OpenCVTests):
|
|
|
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
print "testing", cv.__version__
|
|
|
|
random.seed(0)
|
|
|
|
unittest.main()
|
|
|
|
# optlist, args = getopt.getopt(sys.argv[1:], 'l:rd')
|
|
|
|
# loops = 1
|
|
|
|
# shuffle = 0
|
|
|
|
# doc_frags = False
|
|
|
|
# for o,a in optlist:
|
|
|
|
# if o == '-l':
|
|
|
|
# loops = int(a)
|
|
|
|
# if o == '-r':
|
|
|
|
# shuffle = 1
|
|
|
|
# if o == '-d':
|
|
|
|
# doc_frags = True
|
|
|
|
#
|
|
|
|
# cases = [PreliminaryTests, FunctionTests, AreaTests]
|
|
|
|
# if doc_frags:
|
|
|
|
# cases += [DocumentFragmentTests]
|
|
|
|
# everything = [(tc, t) for tc in cases for t in unittest.TestLoader().getTestCaseNames(tc) ]
|
|
|
|
# if len(args) == 0:
|
|
|
|
# # cases = [NewTests]
|
|
|
|
# args = everything
|
|
|
|
# else:
|
|
|
|
# args = [(tc, t) for (tc, t) in everything if t in args]
|
|
|
|
#
|
|
|
|
# suite = unittest.TestSuite()
|
|
|
|
# for l in range(loops):
|
|
|
|
# if shuffle:
|
|
|
|
# random.shuffle(args)
|
|
|
|
# for tc,t in args:
|
|
|
|
# suite.addTest(tc(t))
|
|
|
|
# unittest.TextTestRunner(verbosity=2).run(suite)
|