|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include "opencv2/highgui.hpp"
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace cv;
|
|
|
|
|
|
|
|
const string FEATURES2D_DIR = "features2d";
|
|
|
|
const string IMAGE_FILENAME = "tsukuba.png";
|
|
|
|
const string DETECTOR_DIR = FEATURES2D_DIR + "/feature_detectors";
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* Regression tests for feature detectors comparing keypoints. *
|
|
|
|
\****************************************************************************************/
|
|
|
|
|
|
|
|
class CV_FeatureDetectorTest : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_FeatureDetectorTest( const string& _name, const Ptr<FeatureDetector>& _fdetector ) :
|
|
|
|
name(_name), fdetector(_fdetector) {}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
bool isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 );
|
|
|
|
void compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints );
|
|
|
|
|
|
|
|
void emptyDataTest();
|
|
|
|
void regressionTest(); // TODO test of detect() with mask
|
|
|
|
|
|
|
|
virtual void run( int );
|
|
|
|
|
|
|
|
string name;
|
|
|
|
Ptr<FeatureDetector> fdetector;
|
|
|
|
};
|
|
|
|
|
|
|
|
void CV_FeatureDetectorTest::emptyDataTest()
|
|
|
|
{
|
|
|
|
// One image.
|
|
|
|
Mat image;
|
|
|
|
vector<KeyPoint> keypoints;
|
|
|
|
try
|
|
|
|
{
|
|
|
|
fdetector->detect( image, keypoints );
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( !keypoints.empty() )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Several images.
|
|
|
|
vector<Mat> images;
|
|
|
|
vector<vector<KeyPoint> > keypointCollection;
|
|
|
|
try
|
|
|
|
{
|
|
|
|
fdetector->detect( images, keypointCollection );
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "detect() on empty image vector must not generate exception (2).\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CV_FeatureDetectorTest::isSimilarKeypoints( const KeyPoint& p1, const KeyPoint& p2 )
|
|
|
|
{
|
|
|
|
const float maxPtDif = 1.f;
|
|
|
|
const float maxSizeDif = 1.f;
|
|
|
|
const float maxAngleDif = 2.f;
|
|
|
|
const float maxResponseDif = 0.1f;
|
|
|
|
|
|
|
|
float dist = (float)norm( p1.pt - p2.pt );
|
|
|
|
return (dist < maxPtDif &&
|
|
|
|
fabs(p1.size - p2.size) < maxSizeDif &&
|
|
|
|
abs(p1.angle - p2.angle) < maxAngleDif &&
|
|
|
|
abs(p1.response - p2.response) < maxResponseDif &&
|
|
|
|
p1.octave == p2.octave &&
|
|
|
|
p1.class_id == p2.class_id );
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_FeatureDetectorTest::compareKeypointSets( const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints )
|
|
|
|
{
|
|
|
|
const float maxCountRatioDif = 0.01f;
|
|
|
|
|
|
|
|
// Compare counts of validation and calculated keypoints.
|
|
|
|
float countRatio = (float)validKeypoints.size() / (float)calcKeypoints.size();
|
|
|
|
if( countRatio < 1 - maxCountRatioDif || countRatio > 1.f + maxCountRatioDif )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "Bad keypoints count ratio (validCount = %d, calcCount = %d).\n",
|
|
|
|
validKeypoints.size(), calcKeypoints.size() );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
int progress = 0, progressCount = (int)(validKeypoints.size() * calcKeypoints.size());
|
|
|
|
int badPointCount = 0, commonPointCount = max((int)validKeypoints.size(), (int)calcKeypoints.size());
|
|
|
|
for( size_t v = 0; v < validKeypoints.size(); v++ )
|
|
|
|
{
|
|
|
|
int nearestIdx = -1;
|
|
|
|
float minDist = std::numeric_limits<float>::max();
|
|
|
|
|
|
|
|
for( size_t c = 0; c < calcKeypoints.size(); c++ )
|
|
|
|
{
|
|
|
|
progress = update_progress( progress, (int)(v*calcKeypoints.size() + c), progressCount, 0 );
|
|
|
|
float curDist = (float)norm( calcKeypoints[c].pt - validKeypoints[v].pt );
|
|
|
|
if( curDist < minDist )
|
|
|
|
{
|
|
|
|
minDist = curDist;
|
|
|
|
nearestIdx = (int)c;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
assert( minDist >= 0 );
|
|
|
|
if( !isSimilarKeypoints( validKeypoints[v], calcKeypoints[nearestIdx] ) )
|
|
|
|
badPointCount++;
|
|
|
|
}
|
|
|
|
ts->printf( cvtest::TS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n",
|
|
|
|
badPointCount, validKeypoints.size(), calcKeypoints.size() );
|
|
|
|
if( badPointCount > 0.9 * commonPointCount )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, " - Bad accuracy!\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
ts->printf( cvtest::TS::LOG, " - OK\n" );
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_FeatureDetectorTest::regressionTest()
|
|
|
|
{
|
|
|
|
assert( !fdetector.empty() );
|
|
|
|
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
|
|
|
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + ".xml.gz";
|
|
|
|
|
|
|
|
// Read the test image.
|
|
|
|
Mat image = imread( imgFilename );
|
|
|
|
if( image.empty() )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
FileStorage fs( resFilename, FileStorage::READ );
|
|
|
|
|
|
|
|
// Compute keypoints.
|
|
|
|
vector<KeyPoint> calcKeypoints;
|
|
|
|
fdetector->detect( image, calcKeypoints );
|
|
|
|
|
|
|
|
if( fs.isOpened() ) // Compare computed and valid keypoints.
|
|
|
|
{
|
|
|
|
// TODO compare saved feature detector params with current ones
|
|
|
|
|
|
|
|
// Read validation keypoints set.
|
|
|
|
vector<KeyPoint> validKeypoints;
|
|
|
|
read( fs["keypoints"], validKeypoints );
|
|
|
|
if( validKeypoints.empty() )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "Keypoints can not be read.\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
compareKeypointSets( validKeypoints, calcKeypoints );
|
|
|
|
}
|
|
|
|
else // Write detector parameters and computed keypoints as validation data.
|
|
|
|
{
|
|
|
|
fs.open( resFilename, FileStorage::WRITE );
|
|
|
|
if( !fs.isOpened() )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "File %s can not be opened to write.\n", resFilename.c_str() );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
fs << "detector_params" << "{";
|
|
|
|
fdetector->write( fs );
|
|
|
|
fs << "}";
|
|
|
|
|
|
|
|
write( fs, "keypoints", calcKeypoints );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_FeatureDetectorTest::run( int /*start_from*/ )
|
|
|
|
{
|
|
|
|
if( !fdetector )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "Feature detector is empty.\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
emptyDataTest();
|
|
|
|
regressionTest();
|
|
|
|
|
|
|
|
ts->set_failed_test_info( cvtest::TS::OK );
|
|
|
|
}
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* Tests registrations *
|
|
|
|
\****************************************************************************************/
|
|
|
|
|
|
|
|
TEST( Features2d_Detector_BRISK, regression )
|
|
|
|
{
|
|
|
|
CV_FeatureDetectorTest test( "detector-brisk", FeatureDetector::create("BRISK") );
|
|
|
|
test.safe_run();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST( Features2d_Detector_FAST, regression )
|
|
|
|
{
|
|
|
|
CV_FeatureDetectorTest test( "detector-fast", FeatureDetector::create("FAST") );
|
|
|
|
test.safe_run();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST( Features2d_Detector_GFTT, regression )
|
|
|
|
{
|
|
|
|
CV_FeatureDetectorTest test( "detector-gftt", FeatureDetector::create("GFTT") );
|
|
|
|
test.safe_run();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST( Features2d_Detector_Harris, regression )
|
|
|
|
{
|
|
|
|
CV_FeatureDetectorTest test( "detector-harris", FeatureDetector::create("HARRIS") );
|
|
|
|
test.safe_run();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST( Features2d_Detector_MSER, DISABLED_regression )
|
|
|
|
{
|
|
|
|
CV_FeatureDetectorTest test( "detector-mser", FeatureDetector::create("MSER") );
|
|
|
|
test.safe_run();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST( Features2d_Detector_ORB, regression )
|
|
|
|
{
|
|
|
|
CV_FeatureDetectorTest test( "detector-orb", FeatureDetector::create("ORB") );
|
|
|
|
test.safe_run();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST( Features2d_Detector_KAZE, regression )
|
|
|
|
{
|
|
|
|
CV_FeatureDetectorTest test( "detector-kaze", FeatureDetector::create("KAZE") );
|
|
|
|
test.safe_run();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST( Features2d_Detector_AKAZE, regression )
|
|
|
|
{
|
|
|
|
CV_FeatureDetectorTest test( "detector-akaze", FeatureDetector::create("AKAZE") );
|
|
|
|
test.safe_run();
|
|
|
|
}
|