mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
104 lines
3.1 KiB
104 lines
3.1 KiB
3 years ago
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html.
|
||
|
|
||
|
#include "opencv2/dnn.hpp"
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
#include "opencv2/highgui.hpp"
|
||
|
|
||
|
#include <iostream>
|
||
|
|
||
|
#include "opencv2/objdetect.hpp"
|
||
|
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace std;
|
||
|
|
||
|
|
||
|
int main(int argc, char ** argv)
|
||
|
{
|
||
|
if (argc != 5)
|
||
|
{
|
||
|
std::cerr << "Usage " << argv[0] << ": "
|
||
|
<< "<det_onnx_path> "
|
||
|
<< "<reg_onnx_path> "
|
||
|
<< "<image1>"
|
||
|
<< "<image2>\n";
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
String det_onnx_path = argv[1];
|
||
|
String reg_onnx_path = argv[2];
|
||
|
String image1_path = argv[3];
|
||
|
String image2_path = argv[4];
|
||
|
std::cout<<image1_path<<" "<<image2_path<<std::endl;
|
||
|
Mat image1 = imread(image1_path);
|
||
|
Mat image2 = imread(image2_path);
|
||
|
|
||
|
float score_thresh = 0.9f;
|
||
|
float nms_thresh = 0.3f;
|
||
|
double cosine_similar_thresh = 0.363;
|
||
|
double l2norm_similar_thresh = 1.128;
|
||
|
int top_k = 5000;
|
||
|
|
||
|
// Initialize FaceDetector
|
||
|
Ptr<FaceDetectorYN> faceDetector;
|
||
|
|
||
|
faceDetector = FaceDetectorYN::create(det_onnx_path, "", image1.size(), score_thresh, nms_thresh, top_k);
|
||
|
Mat faces_1;
|
||
|
faceDetector->detect(image1, faces_1);
|
||
|
if (faces_1.rows < 1)
|
||
|
{
|
||
|
std::cerr << "Cannot find a face in " << image1_path << "\n";
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
faceDetector = FaceDetectorYN::create(det_onnx_path, "", image2.size(), score_thresh, nms_thresh, top_k);
|
||
|
Mat faces_2;
|
||
|
faceDetector->detect(image2, faces_2);
|
||
|
if (faces_2.rows < 1)
|
||
|
{
|
||
|
std::cerr << "Cannot find a face in " << image2_path << "\n";
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
// Initialize FaceRecognizerSF
|
||
|
Ptr<FaceRecognizerSF> faceRecognizer = FaceRecognizerSF::create(reg_onnx_path, "");
|
||
|
|
||
|
|
||
|
Mat aligned_face1, aligned_face2;
|
||
|
faceRecognizer->alignCrop(image1, faces_1.row(0), aligned_face1);
|
||
|
faceRecognizer->alignCrop(image2, faces_2.row(0), aligned_face2);
|
||
|
|
||
|
Mat feature1, feature2;
|
||
|
faceRecognizer->feature(aligned_face1, feature1);
|
||
|
feature1 = feature1.clone();
|
||
|
faceRecognizer->feature(aligned_face2, feature2);
|
||
|
feature2 = feature2.clone();
|
||
|
|
||
|
double cos_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_COSINE);
|
||
|
double L2_score = faceRecognizer->match(feature1, feature2, FaceRecognizerSF::DisType::FR_NORM_L2);
|
||
|
|
||
|
if(cos_score >= cosine_similar_thresh)
|
||
|
{
|
||
|
std::cout << "They have the same identity;";
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
std::cout << "They have different identities;";
|
||
|
}
|
||
|
std::cout << " Cosine Similarity: " << cos_score << ", threshold: " << cosine_similar_thresh << ". (higher value means higher similarity, max 1.0)\n";
|
||
|
|
||
|
if(L2_score <= l2norm_similar_thresh)
|
||
|
{
|
||
|
std::cout << "They have the same identity;";
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
std::cout << "They have different identities.";
|
||
|
}
|
||
|
std::cout << " NormL2 Distance: " << L2_score << ", threshold: " << l2norm_similar_thresh << ". (lower value means higher similarity, min 0.0)\n";
|
||
|
|
||
|
return 0;
|
||
|
}
|