mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
393 lines
15 KiB
393 lines
15 KiB
10 years ago
|
How to Use Background Subtraction Methods {#tutorial_background_subtraction}
|
||
|
=========================================
|
||
|
|
||
|
- Background subtraction (BS) is a common and widely used technique for generating a foreground
|
||
|
mask (namely, a binary image containing the pixels belonging to moving objects in the scene) by
|
||
|
using static cameras.
|
||
|
- As the name suggests, BS calculates the foreground mask performing a subtraction between the
|
||
|
current frame and a background model, containing the static part of the scene or, more in
|
||
|
general, everything that can be considered as background given the characteristics of the
|
||
|
observed scene.
|
||
|
|
||
|
![image](images/Background_Subtraction_Tutorial_Scheme.png)
|
||
|
|
||
|
- Background modeling consists of two main steps:
|
||
|
|
||
|
1. Background Initialization;
|
||
|
2. Background Update.
|
||
|
|
||
|
In the first step, an initial model of the background is computed, while in the second step that
|
||
|
model is updated in order to adapt to possible changes in the scene.
|
||
|
|
||
|
- In this tutorial we will learn how to perform BS by using OpenCV. As input, we will use data
|
||
|
coming from the publicly available data set [Background Models Challenge
|
||
|
(BMC)](http://bmc.univ-bpclermont.fr/) .
|
||
|
|
||
|
Goals
|
||
|
-----
|
||
|
|
||
|
In this tutorial you will learn how to:
|
||
|
|
||
|
1. Read data from videos by using @ref cv::VideoCapture or image sequences by using @ref
|
||
|
cv::imread ;
|
||
|
2. Create and update the background model by using @ref cv::BackgroundSubtractor class;
|
||
|
3. Get and show the foreground mask by using @ref cv::imshow ;
|
||
|
4. Save the output by using @ref cv::imwrite to quantitatively evaluate the results.
|
||
|
|
||
|
Code
|
||
|
----
|
||
|
|
||
|
In the following you can find the source code. We will let the user chose to process either a video
|
||
|
file or a sequence of images.
|
||
|
|
||
|
-
|
||
|
|
||
|
Two different methods are used to generate two foreground masks:
|
||
|
1. @ref cv::MOG
|
||
|
2. @ref cv::MOG2
|
||
|
|
||
|
The results as well as the input data are shown on the screen.
|
||
|
@code{.cpp}
|
||
|
//opencv
|
||
|
#include <opencv2/highgui/highgui.hpp>
|
||
|
#include <opencv2/video/background_segm.hpp>
|
||
|
//C
|
||
|
#include <stdio.h>
|
||
|
//C++
|
||
|
#include <iostream>
|
||
|
#include <sstream>
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace std;
|
||
|
|
||
|
//global variables
|
||
|
Mat frame; //current frame
|
||
|
Mat fgMaskMOG; //fg mask generated by MOG method
|
||
|
Mat fgMaskMOG2; //fg mask fg mask generated by MOG2 method
|
||
|
Ptr<BackgroundSubtractor> pMOG; //MOG Background subtractor
|
||
|
Ptr<BackgroundSubtractor> pMOG2; //MOG2 Background subtractor
|
||
|
int keyboard;
|
||
|
|
||
|
//function declarations
|
||
|
void help();
|
||
|
void processVideo(char* videoFilename);
|
||
|
void processImages(char* firstFrameFilename);
|
||
|
|
||
|
void help()
|
||
|
{
|
||
|
cout
|
||
|
<< "--------------------------------------------------------------------------" << endl
|
||
|
<< "This program shows how to use background subtraction methods provided by " << endl
|
||
|
<< " OpenCV. You can process both videos (-vid) and images (-img)." << endl
|
||
|
<< endl
|
||
|
<< "Usage:" << endl
|
||
|
<< "./bs {-vid <video filename>|-img <image filename>}" << endl
|
||
|
<< "for example: ./bs -vid video.avi" << endl
|
||
|
<< "or: ./bs -img /data/images/1.png" << endl
|
||
|
<< "--------------------------------------------------------------------------" << endl
|
||
|
<< endl;
|
||
|
}
|
||
|
|
||
|
int main(int argc, char* argv[])
|
||
|
{
|
||
|
//print help information
|
||
|
help();
|
||
|
|
||
|
//check for the input parameter correctness
|
||
|
if(argc != 3) {
|
||
|
cerr <<"Incorret input list" << endl;
|
||
|
cerr <<"exiting..." << endl;
|
||
|
return EXIT_FAILURE;
|
||
|
}
|
||
|
|
||
|
//create GUI windows
|
||
|
namedWindow("Frame");
|
||
|
namedWindow("FG Mask MOG");
|
||
|
namedWindow("FG Mask MOG 2");
|
||
|
|
||
|
//create Background Subtractor objects
|
||
|
pMOG = createBackgroundSubtractorMOG(); //MOG approach
|
||
|
pMOG2 = createBackgroundSubtractorMOG2(); //MOG2 approach
|
||
|
|
||
|
if(strcmp(argv[1], "-vid") == 0) {
|
||
|
//input data coming from a video
|
||
|
processVideo(argv[2]);
|
||
|
}
|
||
|
else if(strcmp(argv[1], "-img") == 0) {
|
||
|
//input data coming from a sequence of images
|
||
|
processImages(argv[2]);
|
||
|
}
|
||
|
else {
|
||
|
//error in reading input parameters
|
||
|
cerr <<"Please, check the input parameters." << endl;
|
||
|
cerr <<"Exiting..." << endl;
|
||
|
return EXIT_FAILURE;
|
||
|
}
|
||
|
//destroy GUI windows
|
||
|
destroyAllWindows();
|
||
|
return EXIT_SUCCESS;
|
||
|
}
|
||
|
|
||
|
void processVideo(char* videoFilename) {
|
||
|
//create the capture object
|
||
|
VideoCapture capture(videoFilename);
|
||
|
if(!capture.isOpened()){
|
||
|
//error in opening the video input
|
||
|
cerr << "Unable to open video file: " << videoFilename << endl;
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
//read input data. ESC or 'q' for quitting
|
||
|
while( (char)keyboard != 'q' && (char)keyboard != 27 ){
|
||
|
//read the current frame
|
||
|
if(!capture.read(frame)) {
|
||
|
cerr << "Unable to read next frame." << endl;
|
||
|
cerr << "Exiting..." << endl;
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
//update the background model
|
||
|
pMOG->apply(frame, fgMaskMOG);
|
||
|
pMOG2->apply(frame, fgMaskMOG2);
|
||
|
//get the frame number and write it on the current frame
|
||
|
stringstream ss;
|
||
|
rectangle(frame, cv::Point(10, 2), cv::Point(100,20),
|
||
|
cv::Scalar(255,255,255), -1);
|
||
|
ss << capture.get(CAP_PROP_POS_FRAMES);
|
||
|
string frameNumberString = ss.str();
|
||
|
putText(frame, frameNumberString.c_str(), cv::Point(15, 15),
|
||
|
FONT_HERSHEY_SIMPLEX, 0.5 , cv::Scalar(0,0,0));
|
||
|
//show the current frame and the fg masks
|
||
|
imshow("Frame", frame);
|
||
|
imshow("FG Mask MOG", fgMaskMOG);
|
||
|
imshow("FG Mask MOG 2", fgMaskMOG2);
|
||
|
//get the input from the keyboard
|
||
|
keyboard = waitKey( 30 );
|
||
|
}
|
||
|
//delete capture object
|
||
|
capture.release();
|
||
|
}
|
||
|
|
||
|
void processImages(char* fistFrameFilename) {
|
||
|
//read the first file of the sequence
|
||
|
frame = imread(fistFrameFilename);
|
||
|
if(!frame.data){
|
||
|
//error in opening the first image
|
||
|
cerr << "Unable to open first image frame: " << fistFrameFilename << endl;
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
//current image filename
|
||
|
string fn(fistFrameFilename);
|
||
|
//read input data. ESC or 'q' for quitting
|
||
|
while( (char)keyboard != 'q' && (char)keyboard != 27 ){
|
||
|
//update the background model
|
||
|
pMOG->apply(frame, fgMaskMOG);
|
||
|
pMOG2->apply(frame, fgMaskMOG2);
|
||
|
//get the frame number and write it on the current frame
|
||
|
size_t index = fn.find_last_of("/");
|
||
|
if(index == string::npos) {
|
||
|
index = fn.find_last_of("\\");
|
||
|
}
|
||
|
size_t index2 = fn.find_last_of(".");
|
||
|
string prefix = fn.substr(0,index+1);
|
||
|
string suffix = fn.substr(index2);
|
||
|
string frameNumberString = fn.substr(index+1, index2-index-1);
|
||
|
istringstream iss(frameNumberString);
|
||
|
int frameNumber = 0;
|
||
|
iss >> frameNumber;
|
||
|
rectangle(frame, cv::Point(10, 2), cv::Point(100,20),
|
||
|
cv::Scalar(255,255,255), -1);
|
||
|
putText(frame, frameNumberString.c_str(), cv::Point(15, 15),
|
||
|
FONT_HERSHEY_SIMPLEX, 0.5 , cv::Scalar(0,0,0));
|
||
|
//show the current frame and the fg masks
|
||
|
imshow("Frame", frame);
|
||
|
imshow("FG Mask MOG", fgMaskMOG);
|
||
|
imshow("FG Mask MOG 2", fgMaskMOG2);
|
||
|
//get the input from the keyboard
|
||
|
keyboard = waitKey( 30 );
|
||
|
//search for the next image in the sequence
|
||
|
ostringstream oss;
|
||
|
oss << (frameNumber + 1);
|
||
|
string nextFrameNumberString = oss.str();
|
||
|
string nextFrameFilename = prefix + nextFrameNumberString + suffix;
|
||
|
//read the next frame
|
||
|
frame = imread(nextFrameFilename);
|
||
|
if(!frame.data){
|
||
|
//error in opening the next image in the sequence
|
||
|
cerr << "Unable to open image frame: " << nextFrameFilename << endl;
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
//update the path of the current frame
|
||
|
fn.assign(nextFrameFilename);
|
||
|
}
|
||
|
}
|
||
|
@endcode
|
||
|
- The source file can be downloaded [here ](samples/cpp/tutorial_code/video/bg_sub.cpp).
|
||
|
|
||
|
Explanation
|
||
|
-----------
|
||
|
|
||
|
We discuss the main parts of the above code:
|
||
|
|
||
|
1. First, three Mat objects are allocated to store the current frame and two foreground masks,
|
||
|
obtained by using two different BS algorithms.
|
||
|
@code{.cpp}
|
||
|
Mat frame; //current frame
|
||
|
Mat fgMaskMOG; //fg mask generated by MOG method
|
||
|
Mat fgMaskMOG2; //fg mask fg mask generated by MOG2 method
|
||
|
@endcode
|
||
|
2. Two @ref cv::BackgroundSubtractor objects will be used to generate the foreground masks. In this
|
||
|
example, default parameters are used, but it is also possible to declare specific parameters in
|
||
|
the create function.
|
||
|
@code{.cpp}
|
||
|
Ptr<BackgroundSubtractor> pMOG; //MOG Background subtractor
|
||
|
Ptr<BackgroundSubtractor> pMOG2; //MOG2 Background subtractor
|
||
|
...
|
||
|
//create Background Subtractor objects
|
||
|
pMOG = createBackgroundSubtractorMOG(); //MOG approach
|
||
|
pMOG2 = createBackgroundSubtractorMOG2(); //MOG2 approach
|
||
|
@endcode
|
||
|
3. The command line arguments are analysed. The user can chose between two options:
|
||
|
|
||
|
- video files (by choosing the option -vid);
|
||
|
- image sequences (by choosing the option -img).
|
||
|
@code{.cpp}
|
||
|
if(strcmp(argv[1], "-vid") == 0) {
|
||
|
//input data coming from a video
|
||
|
processVideo(argv[2]);
|
||
|
}
|
||
|
else if(strcmp(argv[1], "-img") == 0) {
|
||
|
//input data coming from a sequence of images
|
||
|
processImages(argv[2]);
|
||
|
}
|
||
|
@endcode
|
||
|
4. Suppose you want to process a video file. The video is read until the end is reached or the user
|
||
|
presses the button 'q' or the button 'ESC'.
|
||
|
@code{.cpp}
|
||
|
while( (char)keyboard != 'q' && (char)keyboard != 27 ){
|
||
|
//read the current frame
|
||
|
if(!capture.read(frame)) {
|
||
|
cerr << "Unable to read next frame." << endl;
|
||
|
cerr << "Exiting..." << endl;
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
@endcode
|
||
|
5. Every frame is used both for calculating the foreground mask and for updating the background. If
|
||
|
you want to change the learning rate used for updating the background model, it is possible to
|
||
|
set a specific learning rate by passing a third parameter to the 'apply' method.
|
||
|
@code{.cpp}
|
||
|
//update the background model
|
||
|
pMOG->apply(frame, fgMaskMOG);
|
||
|
pMOG2->apply(frame, fgMaskMOG2);
|
||
|
@endcode
|
||
|
6. The current frame number can be extracted from the @ref cv::VideoCapture object and stamped in
|
||
|
the top left corner of the current frame. A white rectangle is used to highlight the black
|
||
|
colored frame number.
|
||
|
@code{.cpp}
|
||
|
//get the frame number and write it on the current frame
|
||
|
stringstream ss;
|
||
|
rectangle(frame, cv::Point(10, 2), cv::Point(100,20),
|
||
|
cv::Scalar(255,255,255), -1);
|
||
|
ss << capture.get(CAP_PROP_POS_FRAMES);
|
||
|
string frameNumberString = ss.str();
|
||
|
putText(frame, frameNumberString.c_str(), cv::Point(15, 15),
|
||
|
FONT_HERSHEY_SIMPLEX, 0.5 , cv::Scalar(0,0,0));
|
||
|
@endcode
|
||
|
7. We are ready to show the current input frame and the results.
|
||
|
@code{.cpp}
|
||
|
//show the current frame and the fg masks
|
||
|
imshow("Frame", frame);
|
||
|
imshow("FG Mask MOG", fgMaskMOG);
|
||
|
imshow("FG Mask MOG 2", fgMaskMOG2);
|
||
|
@endcode
|
||
|
8. The same operations listed above can be performed using a sequence of images as input. The
|
||
|
processImage function is called and, instead of using a @ref cv::VideoCapture object, the images
|
||
|
are read by using @ref cv::imread , after individuating the correct path for the next frame to
|
||
|
read.
|
||
|
@code{.cpp}
|
||
|
//read the first file of the sequence
|
||
|
frame = imread(fistFrameFilename);
|
||
|
if(!frame.data){
|
||
|
//error in opening the first image
|
||
|
cerr << "Unable to open first image frame: " << fistFrameFilename << endl;
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
...
|
||
|
//search for the next image in the sequence
|
||
|
ostringstream oss;
|
||
|
oss << (frameNumber + 1);
|
||
|
string nextFrameNumberString = oss.str();
|
||
|
string nextFrameFilename = prefix + nextFrameNumberString + suffix;
|
||
|
//read the next frame
|
||
|
frame = imread(nextFrameFilename);
|
||
|
if(!frame.data){
|
||
|
//error in opening the next image in the sequence
|
||
|
cerr << "Unable to open image frame: " << nextFrameFilename << endl;
|
||
|
exit(EXIT_FAILURE);
|
||
|
}
|
||
|
//update the path of the current frame
|
||
|
fn.assign(nextFrameFilename);
|
||
|
@endcode
|
||
|
Note that this example works only on image sequences in which the filename format is \<n\>.png,
|
||
|
where n is the frame number (e.g., 7.png).
|
||
|
|
||
|
Results
|
||
|
-------
|
||
|
|
||
|
- Given the following input parameters:
|
||
|
@code{.cpp}
|
||
|
-vid Video_001.avi
|
||
|
@endcode
|
||
|
The output of the program will look as the following:
|
||
|
|
||
|
![image](images/Background_Subtraction_Tutorial_Result_1.png)
|
||
|
|
||
|
- The video file Video_001.avi is part of the [Background Models Challenge
|
||
|
(BMC)](http://bmc.univ-bpclermont.fr/) data set and it can be downloaded from the following link
|
||
|
[Video_001](http://bmc.univ-bpclermont.fr/sites/default/files/videos/evaluation/Video_001.zip)
|
||
|
(about 32 MB).
|
||
|
- If you want to process a sequence of images, then the '-img' option has to be chosen:
|
||
|
@code{.cpp}
|
||
|
-img 111_png/input/1.png
|
||
|
@endcode
|
||
|
The output of the program will look as the following:
|
||
|
|
||
|
![image](images/Background_Subtraction_Tutorial_Result_2.png)
|
||
|
|
||
|
- The sequence of images used in this example is part of the [Background Models Challenge
|
||
|
(BMC)](http://bmc.univ-bpclermont.fr/) dataset and it can be downloaded from the following link
|
||
|
[sequence 111](http://bmc.univ-bpclermont.fr/sites/default/files/videos/learning/111_png.zip)
|
||
|
(about 708 MB). Please, note that this example works only on sequences in which the filename
|
||
|
format is \<n\>.png, where n is the frame number (e.g., 7.png).
|
||
|
|
||
|
Evaluation
|
||
|
----------
|
||
|
|
||
|
To quantitatively evaluate the results obtained, we need to:
|
||
|
|
||
|
- Save the output images;
|
||
|
- Have the ground truth images for the chosen sequence.
|
||
|
|
||
|
In order to save the output images, we can use @ref cv::imwrite . Adding the following code allows
|
||
|
for saving the foreground masks.
|
||
|
@code{.cpp}
|
||
|
string imageToSave = "output_MOG_" + frameNumberString + ".png";
|
||
|
bool saved = imwrite(imageToSave, fgMaskMOG);
|
||
|
if(!saved) {
|
||
|
cerr << "Unable to save " << imageToSave << endl;
|
||
|
}
|
||
|
@endcode
|
||
|
Once we have collected the result images, we can compare them with the ground truth data. There
|
||
|
exist several publicly available sequences for background subtraction that come with ground truth
|
||
|
data. If you decide to use the [Background Models Challenge (BMC)](http://bmc.univ-bpclermont.fr/),
|
||
|
then the result images can be used as input for the [BMC
|
||
|
Wizard](http://bmc.univ-bpclermont.fr/?q=node/7). The wizard can compute different measures about
|
||
|
the accuracy of the results.
|
||
|
|
||
|
References
|
||
|
----------
|
||
|
|
||
|
- Background Models Challenge (BMC) website, [](http://bmc.univ-bpclermont.fr/)
|
||
|
- Antoine Vacavant, Thierry Chateau, Alexis Wilhelm and Laurent Lequievre. A Benchmark Dataset for
|
||
|
Foreground/Background Extraction. In ACCV 2012, Workshop: Background Models Challenge, LNCS
|
||
|
7728, 291-300. November 2012, Daejeon, Korea.
|
||
|
|