mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
94 lines
2.5 KiB
94 lines
2.5 KiB
10 years ago
|
Convex Hull {#tutorial_hull}
|
||
|
===========
|
||
|
|
||
|
Goal
|
||
|
----
|
||
|
|
||
|
In this tutorial you will learn how to:
|
||
|
|
||
|
- Use the OpenCV function @ref cv::convexHull
|
||
|
|
||
|
Theory
|
||
|
------
|
||
|
|
||
|
Code
|
||
|
----
|
||
|
|
||
|
This tutorial code's is shown lines below. You can also download it from
|
||
|
[here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ShapeDescriptors/hull_demo.cpp)
|
||
|
@code{.cpp}
|
||
|
#include "opencv2/highgui.hpp"
|
||
|
#include "opencv2/imgproc.hpp"
|
||
|
#include <iostream>
|
||
|
#include <stdio.h>
|
||
|
#include <stdlib.h>
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace std;
|
||
|
|
||
|
Mat src; Mat src_gray;
|
||
|
int thresh = 100;
|
||
|
int max_thresh = 255;
|
||
|
RNG rng(12345);
|
||
|
|
||
|
/// Function header
|
||
|
void thresh_callback(int, void* );
|
||
|
@endcode
|
||
|
/\* @function main */ int main( int argc, char*\* argv )
|
||
|
|
||
|
|
||
|
{
|
||
|
/// Load source image and convert it to gray src = imread( argv[1], 1 );
|
||
|
|
||
|
/// Convert image to gray and blur it cvtColor( src, src_gray, COLOR_BGR2GRAY ); blur(
|
||
|
src_gray, src_gray, Size(3,3) );
|
||
|
|
||
|
/// Create Window char\* source_window = "Source"; namedWindow( source_window,
|
||
|
WINDOW_AUTOSIZE ); imshow( source_window, src );
|
||
|
|
||
|
createTrackbar( " Threshold:", "Source", &thresh, max_thresh, thresh_callback );
|
||
|
thresh_callback( 0, 0 );
|
||
|
|
||
|
waitKey(0); return(0);
|
||
|
|
||
|
}
|
||
|
|
||
|
/\* @function thresh_callback */ void thresh_callback(int, void* ) { Mat src_copy =
|
||
|
src.clone(); Mat threshold_output; vector\<vector\<Point\> \> contours; vector\<Vec4i\>
|
||
|
hierarchy;
|
||
|
|
||
|
/// Detect edges using Threshold threshold( src_gray, threshold_output, thresh, 255,
|
||
|
THRESH_BINARY );
|
||
|
|
||
|
/// Find contours findContours( threshold_output, contours, hierarchy, RETR_TREE,
|
||
|
CHAIN_APPROX_SIMPLE, Point(0, 0) );
|
||
|
|
||
|
/// Find the convex hull object for each contour vector\<vector\<Point\> \>hull(
|
||
|
contours.size() ); for( int i = 0; i \< contours.size(); i++ ) { convexHull(
|
||
|
Mat(contours[i]), hull[i], false ); }
|
||
|
|
||
|
/// Draw contours + hull results Mat drawing = Mat::zeros( threshold_output.size(),
|
||
|
CV_8UC3 ); for( int i = 0; i\< contours.size(); i++ ) { Scalar color = Scalar(
|
||
|
rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) ); drawContours( drawing,
|
||
|
contours, i, color, 1, 8, vector\<Vec4i\>(), 0, Point() ); drawContours( drawing, hull, i,
|
||
|
color, 1, 8, vector\<Vec4i\>(), 0, Point() ); }
|
||
|
|
||
|
/// Show in a window namedWindow( "Hull demo", WINDOW_AUTOSIZE ); imshow( "Hull demo",
|
||
|
drawing );
|
||
|
|
||
|
}
|
||
|
|
||
|
Explanation
|
||
|
-----------
|
||
|
|
||
|
Result
|
||
|
------
|
||
|
|
||
|
1. Here it is:
|
||
|
|
||
|
----------- -----------
|
||
|
|Hull_0| |Hull_1|
|
||
|
----------- -----------
|
||
|
|
||
|
|