mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
90 lines
2.1 KiB
90 lines
2.1 KiB
10 years ago
|
Feature Detection {#tutorial_feature_detection}
|
||
|
=================
|
||
|
|
||
|
Goal
|
||
|
----
|
||
|
|
||
|
In this tutorial you will learn how to:
|
||
|
|
||
|
- Use the @ref cv::FeatureDetector interface in order to find interest points. Specifically:
|
||
|
- Use the @ref cv::SurfFeatureDetector and its function @ref cv::detect to perform the
|
||
|
detection process
|
||
|
- Use the function @ref cv::drawKeypoints to draw the detected keypoints
|
||
|
|
||
|
Theory
|
||
|
------
|
||
|
|
||
|
Code
|
||
|
----
|
||
|
|
||
|
This tutorial code's is shown lines below.
|
||
|
@code{.cpp}
|
||
|
#include <stdio.h>
|
||
|
#include <iostream>
|
||
|
#include "opencv2/core.hpp"
|
||
|
#include "opencv2/features2d.hpp"
|
||
|
#include "opencv2/xfeatures2d.hpp"
|
||
|
#include "opencv2/highgui.hpp"
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace cv::xfeatures2d;
|
||
|
|
||
|
void readme();
|
||
|
|
||
|
/* @function main */
|
||
|
int main( int argc, char** argv )
|
||
|
{
|
||
|
if( argc != 3 )
|
||
|
{ readme(); return -1; }
|
||
|
|
||
|
Mat img_1 = imread( argv[1], IMREAD_GRAYSCALE );
|
||
|
Mat img_2 = imread( argv[2], IMREAD_GRAYSCALE );
|
||
|
|
||
|
if( !img_1.data || !img_2.data )
|
||
|
{ std::cout<< " --(!) Error reading images " << std::endl; return -1; }
|
||
|
|
||
|
//-- Step 1: Detect the keypoints using SURF Detector
|
||
|
int minHessian = 400;
|
||
|
|
||
|
Ptr<SURF> detector = SURF::create( minHessian );
|
||
|
|
||
|
std::vector<KeyPoint> keypoints_1, keypoints_2;
|
||
|
|
||
|
detector->detect( img_1, keypoints_1 );
|
||
|
detector->detect( img_2, keypoints_2 );
|
||
|
|
||
|
//-- Draw keypoints
|
||
|
Mat img_keypoints_1; Mat img_keypoints_2;
|
||
|
|
||
|
drawKeypoints( img_1, keypoints_1, img_keypoints_1, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
|
||
|
drawKeypoints( img_2, keypoints_2, img_keypoints_2, Scalar::all(-1), DrawMatchesFlags::DEFAULT );
|
||
|
|
||
|
//-- Show detected (drawn) keypoints
|
||
|
imshow("Keypoints 1", img_keypoints_1 );
|
||
|
imshow("Keypoints 2", img_keypoints_2 );
|
||
|
|
||
|
waitKey(0);
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* @function readme */
|
||
|
void readme()
|
||
|
{ std::cout << " Usage: ./SURF_detector <img1> <img2>" << std::endl; }
|
||
|
@endcode
|
||
|
Explanation
|
||
|
-----------
|
||
|
|
||
|
Result
|
||
|
------
|
||
|
|
||
|
1. Here is the result of the feature detection applied to the first image:
|
||
|
|
||
|
![image](images/Feature_Detection_Result_a.jpg)
|
||
|
|
||
|
2. And here is the result for the second image:
|
||
|
|
||
|
![image](images/Feature_Detection_Result_b.jpg)
|
||
|
|
||
|
|