|
|
|
/* slabrd.f -- translated by f2c (version 20061008).
|
|
|
|
You must link the resulting object file with libf2c:
|
|
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
|
|
-- in that order, at the end of the command line, as in
|
|
|
|
cc *.o -lf2c -lm
|
|
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
|
|
|
|
|
|
/* Table of constant values */
|
|
|
|
|
|
|
|
static real c_b4 = -1.f;
|
|
|
|
static real c_b5 = 1.f;
|
|
|
|
static integer c__1 = 1;
|
|
|
|
static real c_b16 = 0.f;
|
|
|
|
|
|
|
|
/* Subroutine */ int slabrd_(integer *m, integer *n, integer *nb, real *a,
|
|
|
|
integer *lda, real *d__, real *e, real *tauq, real *taup, real *x,
|
|
|
|
integer *ldx, real *y, integer *ldy)
|
|
|
|
{
|
|
|
|
/* System generated locals */
|
|
|
|
integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2,
|
|
|
|
i__3;
|
|
|
|
|
|
|
|
/* Local variables */
|
|
|
|
integer i__;
|
|
|
|
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *),
|
|
|
|
sgemv_(char *, integer *, integer *, real *, real *, integer *,
|
|
|
|
real *, integer *, real *, real *, integer *), slarfg_(
|
|
|
|
integer *, real *, real *, integer *, real *);
|
|
|
|
|
|
|
|
|
|
|
|
/* -- LAPACK auxiliary routine (version 3.2) -- */
|
|
|
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
|
|
|
/* November 2006 */
|
|
|
|
|
|
|
|
/* .. Scalar Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Array Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
|
|
|
|
/* Purpose */
|
|
|
|
/* ======= */
|
|
|
|
|
|
|
|
/* SLABRD reduces the first NB rows and columns of a real general */
|
|
|
|
/* m by n matrix A to upper or lower bidiagonal form by an orthogonal */
|
|
|
|
/* transformation Q' * A * P, and returns the matrices X and Y which */
|
|
|
|
/* are needed to apply the transformation to the unreduced part of A. */
|
|
|
|
|
|
|
|
/* If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower */
|
|
|
|
/* bidiagonal form. */
|
|
|
|
|
|
|
|
/* This is an auxiliary routine called by SGEBRD */
|
|
|
|
|
|
|
|
/* Arguments */
|
|
|
|
/* ========= */
|
|
|
|
|
|
|
|
/* M (input) INTEGER */
|
|
|
|
/* The number of rows in the matrix A. */
|
|
|
|
|
|
|
|
/* N (input) INTEGER */
|
|
|
|
/* The number of columns in the matrix A. */
|
|
|
|
|
|
|
|
/* NB (input) INTEGER */
|
|
|
|
/* The number of leading rows and columns of A to be reduced. */
|
|
|
|
|
|
|
|
/* A (input/output) REAL array, dimension (LDA,N) */
|
|
|
|
/* On entry, the m by n general matrix to be reduced. */
|
|
|
|
/* On exit, the first NB rows and columns of the matrix are */
|
|
|
|
/* overwritten; the rest of the array is unchanged. */
|
|
|
|
/* If m >= n, elements on and below the diagonal in the first NB */
|
|
|
|
/* columns, with the array TAUQ, represent the orthogonal */
|
|
|
|
/* matrix Q as a product of elementary reflectors; and */
|
|
|
|
/* elements above the diagonal in the first NB rows, with the */
|
|
|
|
/* array TAUP, represent the orthogonal matrix P as a product */
|
|
|
|
/* of elementary reflectors. */
|
|
|
|
/* If m < n, elements below the diagonal in the first NB */
|
|
|
|
/* columns, with the array TAUQ, represent the orthogonal */
|
|
|
|
/* matrix Q as a product of elementary reflectors, and */
|
|
|
|
/* elements on and above the diagonal in the first NB rows, */
|
|
|
|
/* with the array TAUP, represent the orthogonal matrix P as */
|
|
|
|
/* a product of elementary reflectors. */
|
|
|
|
/* See Further Details. */
|
|
|
|
|
|
|
|
/* LDA (input) INTEGER */
|
|
|
|
/* The leading dimension of the array A. LDA >= max(1,M). */
|
|
|
|
|
|
|
|
/* D (output) REAL array, dimension (NB) */
|
|
|
|
/* The diagonal elements of the first NB rows and columns of */
|
|
|
|
/* the reduced matrix. D(i) = A(i,i). */
|
|
|
|
|
|
|
|
/* E (output) REAL array, dimension (NB) */
|
|
|
|
/* The off-diagonal elements of the first NB rows and columns of */
|
|
|
|
/* the reduced matrix. */
|
|
|
|
|
|
|
|
/* TAUQ (output) REAL array dimension (NB) */
|
|
|
|
/* The scalar factors of the elementary reflectors which */
|
|
|
|
/* represent the orthogonal matrix Q. See Further Details. */
|
|
|
|
|
|
|
|
/* TAUP (output) REAL array, dimension (NB) */
|
|
|
|
/* The scalar factors of the elementary reflectors which */
|
|
|
|
/* represent the orthogonal matrix P. See Further Details. */
|
|
|
|
|
|
|
|
/* X (output) REAL array, dimension (LDX,NB) */
|
|
|
|
/* The m-by-nb matrix X required to update the unreduced part */
|
|
|
|
/* of A. */
|
|
|
|
|
|
|
|
/* LDX (input) INTEGER */
|
|
|
|
/* The leading dimension of the array X. LDX >= M. */
|
|
|
|
|
|
|
|
/* Y (output) REAL array, dimension (LDY,NB) */
|
|
|
|
/* The n-by-nb matrix Y required to update the unreduced part */
|
|
|
|
/* of A. */
|
|
|
|
|
|
|
|
/* LDY (input) INTEGER */
|
|
|
|
/* The leading dimension of the array Y. LDY >= N. */
|
|
|
|
|
|
|
|
/* Further Details */
|
|
|
|
/* =============== */
|
|
|
|
|
|
|
|
/* The matrices Q and P are represented as products of elementary */
|
|
|
|
/* reflectors: */
|
|
|
|
|
|
|
|
/* Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) */
|
|
|
|
|
|
|
|
/* Each H(i) and G(i) has the form: */
|
|
|
|
|
|
|
|
/* H(i) = I - tauq * v * v' and G(i) = I - taup * u * u' */
|
|
|
|
|
|
|
|
/* where tauq and taup are real scalars, and v and u are real vectors. */
|
|
|
|
|
|
|
|
/* If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in */
|
|
|
|
/* A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in */
|
|
|
|
/* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
|
|
|
|
|
|
|
|
/* If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in */
|
|
|
|
/* A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in */
|
|
|
|
/* A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
|
|
|
|
|
|
|
|
/* The elements of the vectors v and u together form the m-by-nb matrix */
|
|
|
|
/* V and the nb-by-n matrix U' which are needed, with X and Y, to apply */
|
|
|
|
/* the transformation to the unreduced part of the matrix, using a block */
|
|
|
|
/* update of the form: A := A - V*Y' - X*U'. */
|
|
|
|
|
|
|
|
/* The contents of A on exit are illustrated by the following examples */
|
|
|
|
/* with nb = 2: */
|
|
|
|
|
|
|
|
/* m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */
|
|
|
|
|
|
|
|
/* ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) */
|
|
|
|
/* ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) */
|
|
|
|
/* ( v1 v2 a a a ) ( v1 1 a a a a ) */
|
|
|
|
/* ( v1 v2 a a a ) ( v1 v2 a a a a ) */
|
|
|
|
/* ( v1 v2 a a a ) ( v1 v2 a a a a ) */
|
|
|
|
/* ( v1 v2 a a a ) */
|
|
|
|
|
|
|
|
/* where a denotes an element of the original matrix which is unchanged, */
|
|
|
|
/* vi denotes an element of the vector defining H(i), and ui an element */
|
|
|
|
/* of the vector defining G(i). */
|
|
|
|
|
|
|
|
/* ===================================================================== */
|
|
|
|
|
|
|
|
/* .. Parameters .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Local Scalars .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. External Subroutines .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Intrinsic Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Executable Statements .. */
|
|
|
|
|
|
|
|
/* Quick return if possible */
|
|
|
|
|
|
|
|
/* Parameter adjustments */
|
|
|
|
a_dim1 = *lda;
|
|
|
|
a_offset = 1 + a_dim1;
|
|
|
|
a -= a_offset;
|
|
|
|
--d__;
|
|
|
|
--e;
|
|
|
|
--tauq;
|
|
|
|
--taup;
|
|
|
|
x_dim1 = *ldx;
|
|
|
|
x_offset = 1 + x_dim1;
|
|
|
|
x -= x_offset;
|
|
|
|
y_dim1 = *ldy;
|
|
|
|
y_offset = 1 + y_dim1;
|
|
|
|
y -= y_offset;
|
|
|
|
|
|
|
|
/* Function Body */
|
|
|
|
if (*m <= 0 || *n <= 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (*m >= *n) {
|
|
|
|
|
|
|
|
/* Reduce to upper bidiagonal form */
|
|
|
|
|
|
|
|
i__1 = *nb;
|
|
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
|
|
|
|
/* Update A(i:m,i) */
|
|
|
|
|
|
|
|
i__2 = *m - i__ + 1;
|
|
|
|
i__3 = i__ - 1;
|
|
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + a_dim1], lda,
|
|
|
|
&y[i__ + y_dim1], ldy, &c_b5, &a[i__ + i__ * a_dim1], &
|
|
|
|
c__1);
|
|
|
|
i__2 = *m - i__ + 1;
|
|
|
|
i__3 = i__ - 1;
|
|
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + x_dim1], ldx,
|
|
|
|
&a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[i__ + i__ *
|
|
|
|
a_dim1], &c__1);
|
|
|
|
|
|
|
|
/* Generate reflection Q(i) to annihilate A(i+1:m,i) */
|
|
|
|
|
|
|
|
i__2 = *m - i__ + 1;
|
|
|
|
/* Computing MIN */
|
|
|
|
i__3 = i__ + 1;
|
|
|
|
slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3, *m)+ i__ *
|
|
|
|
a_dim1], &c__1, &tauq[i__]);
|
|
|
|
d__[i__] = a[i__ + i__ * a_dim1];
|
|
|
|
if (i__ < *n) {
|
|
|
|
a[i__ + i__ * a_dim1] = 1.f;
|
|
|
|
|
|
|
|
/* Compute Y(i+1:n,i) */
|
|
|
|
|
|
|
|
i__2 = *m - i__ + 1;
|
|
|
|
i__3 = *n - i__;
|
|
|
|
sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + (i__ + 1) *
|
|
|
|
a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &
|
|
|
|
y[i__ + 1 + i__ * y_dim1], &c__1);
|
|
|
|
i__2 = *m - i__ + 1;
|
|
|
|
i__3 = i__ - 1;
|
|
|
|
sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1],
|
|
|
|
lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ *
|
|
|
|
y_dim1 + 1], &c__1);
|
|
|
|
i__2 = *n - i__;
|
|
|
|
i__3 = i__ - 1;
|
|
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 +
|
|
|
|
y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[
|
|
|
|
i__ + 1 + i__ * y_dim1], &c__1);
|
|
|
|
i__2 = *m - i__ + 1;
|
|
|
|
i__3 = i__ - 1;
|
|
|
|
sgemv_("Transpose", &i__2, &i__3, &c_b5, &x[i__ + x_dim1],
|
|
|
|
ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ *
|
|
|
|
y_dim1 + 1], &c__1);
|
|
|
|
i__2 = i__ - 1;
|
|
|
|
i__3 = *n - i__;
|
|
|
|
sgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) *
|
|
|
|
a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5,
|
|
|
|
&y[i__ + 1 + i__ * y_dim1], &c__1);
|
|
|
|
i__2 = *n - i__;
|
|
|
|
sscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
|
|
|
|
|
|
|
|
/* Update A(i,i+1:n) */
|
|
|
|
|
|
|
|
i__2 = *n - i__;
|
|
|
|
sgemv_("No transpose", &i__2, &i__, &c_b4, &y[i__ + 1 +
|
|
|
|
y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b5, &a[i__ + (
|
|
|
|
i__ + 1) * a_dim1], lda);
|
|
|
|
i__2 = i__ - 1;
|
|
|
|
i__3 = *n - i__;
|
|
|
|
sgemv_("Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) *
|
|
|
|
a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b5, &a[
|
|
|
|
i__ + (i__ + 1) * a_dim1], lda);
|
|
|
|
|
|
|
|
/* Generate reflection P(i) to annihilate A(i,i+2:n) */
|
|
|
|
|
|
|
|
i__2 = *n - i__;
|
|
|
|
/* Computing MIN */
|
|
|
|
i__3 = i__ + 2;
|
|
|
|
slarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min(
|
|
|
|
i__3, *n)* a_dim1], lda, &taup[i__]);
|
|
|
|
e[i__] = a[i__ + (i__ + 1) * a_dim1];
|
|
|
|
a[i__ + (i__ + 1) * a_dim1] = 1.f;
|
|
|
|
|
|
|
|
/* Compute X(i+1:m,i) */
|
|
|
|
|
|
|
|
i__2 = *m - i__;
|
|
|
|
i__3 = *n - i__;
|
|
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__
|
|
|
|
+ 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1],
|
|
|
|
lda, &c_b16, &x[i__ + 1 + i__ * x_dim1], &c__1);
|
|
|
|
i__2 = *n - i__;
|
|
|
|
sgemv_("Transpose", &i__2, &i__, &c_b5, &y[i__ + 1 + y_dim1],
|
|
|
|
ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &c_b16, &x[
|
|
|
|
i__ * x_dim1 + 1], &c__1);
|
|
|
|
i__2 = *m - i__;
|
|
|
|
sgemv_("No transpose", &i__2, &i__, &c_b4, &a[i__ + 1 +
|
|
|
|
a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
|
|
|
|
i__ + 1 + i__ * x_dim1], &c__1);
|
|
|
|
i__2 = i__ - 1;
|
|
|
|
i__3 = *n - i__;
|
|
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) *
|
|
|
|
a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &
|
|
|
|
c_b16, &x[i__ * x_dim1 + 1], &c__1);
|
|
|
|
i__2 = *m - i__;
|
|
|
|
i__3 = i__ - 1;
|
|
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 +
|
|
|
|
x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
|
|
|
|
i__ + 1 + i__ * x_dim1], &c__1);
|
|
|
|
i__2 = *m - i__;
|
|
|
|
sscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
|
|
|
|
}
|
|
|
|
/* L10: */
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
|
|
|
|
/* Reduce to lower bidiagonal form */
|
|
|
|
|
|
|
|
i__1 = *nb;
|
|
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
|
|
|
|
/* Update A(i,i:n) */
|
|
|
|
|
|
|
|
i__2 = *n - i__ + 1;
|
|
|
|
i__3 = i__ - 1;
|
|
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + y_dim1], ldy,
|
|
|
|
&a[i__ + a_dim1], lda, &c_b5, &a[i__ + i__ * a_dim1],
|
|
|
|
lda);
|
|
|
|
i__2 = i__ - 1;
|
|
|
|
i__3 = *n - i__ + 1;
|
|
|
|
sgemv_("Transpose", &i__2, &i__3, &c_b4, &a[i__ * a_dim1 + 1],
|
|
|
|
lda, &x[i__ + x_dim1], ldx, &c_b5, &a[i__ + i__ * a_dim1],
|
|
|
|
lda);
|
|
|
|
|
|
|
|
/* Generate reflection P(i) to annihilate A(i,i+1:n) */
|
|
|
|
|
|
|
|
i__2 = *n - i__ + 1;
|
|
|
|
/* Computing MIN */
|
|
|
|
i__3 = i__ + 1;
|
|
|
|
slarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3, *n)*
|
|
|
|
a_dim1], lda, &taup[i__]);
|
|
|
|
d__[i__] = a[i__ + i__ * a_dim1];
|
|
|
|
if (i__ < *m) {
|
|
|
|
a[i__ + i__ * a_dim1] = 1.f;
|
|
|
|
|
|
|
|
/* Compute X(i+1:m,i) */
|
|
|
|
|
|
|
|
i__2 = *m - i__;
|
|
|
|
i__3 = *n - i__ + 1;
|
|
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + i__ *
|
|
|
|
a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &
|
|
|
|
x[i__ + 1 + i__ * x_dim1], &c__1);
|
|
|
|
i__2 = *n - i__ + 1;
|
|
|
|
i__3 = i__ - 1;
|
|
|
|
sgemv_("Transpose", &i__2, &i__3, &c_b5, &y[i__ + y_dim1],
|
|
|
|
ldy, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ *
|
|
|
|
x_dim1 + 1], &c__1);
|
|
|
|
i__2 = *m - i__;
|
|
|
|
i__3 = i__ - 1;
|
|
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 +
|
|
|
|
a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
|
|
|
|
i__ + 1 + i__ * x_dim1], &c__1);
|
|
|
|
i__2 = i__ - 1;
|
|
|
|
i__3 = *n - i__ + 1;
|
|
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b5, &a[i__ * a_dim1 +
|
|
|
|
1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ *
|
|
|
|
x_dim1 + 1], &c__1);
|
|
|
|
i__2 = *m - i__;
|
|
|
|
i__3 = i__ - 1;
|
|
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 +
|
|
|
|
x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
|
|
|
|
i__ + 1 + i__ * x_dim1], &c__1);
|
|
|
|
i__2 = *m - i__;
|
|
|
|
sscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
|
|
|
|
|
|
|
|
/* Update A(i+1:m,i) */
|
|
|
|
|
|
|
|
i__2 = *m - i__;
|
|
|
|
i__3 = i__ - 1;
|
|
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 +
|
|
|
|
a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b5, &a[i__ +
|
|
|
|
1 + i__ * a_dim1], &c__1);
|
|
|
|
i__2 = *m - i__;
|
|
|
|
sgemv_("No transpose", &i__2, &i__, &c_b4, &x[i__ + 1 +
|
|
|
|
x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[
|
|
|
|
i__ + 1 + i__ * a_dim1], &c__1);
|
|
|
|
|
|
|
|
/* Generate reflection Q(i) to annihilate A(i+2:m,i) */
|
|
|
|
|
|
|
|
i__2 = *m - i__;
|
|
|
|
/* Computing MIN */
|
|
|
|
i__3 = i__ + 2;
|
|
|
|
slarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3, *m)+
|
|
|
|
i__ * a_dim1], &c__1, &tauq[i__]);
|
|
|
|
e[i__] = a[i__ + 1 + i__ * a_dim1];
|
|
|
|
a[i__ + 1 + i__ * a_dim1] = 1.f;
|
|
|
|
|
|
|
|
/* Compute Y(i+1:n,i) */
|
|
|
|
|
|
|
|
i__2 = *m - i__;
|
|
|
|
i__3 = *n - i__;
|
|
|
|
sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ +
|
|
|
|
1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1,
|
|
|
|
&c_b16, &y[i__ + 1 + i__ * y_dim1], &c__1);
|
|
|
|
i__2 = *m - i__;
|
|
|
|
i__3 = i__ - 1;
|
|
|
|
sgemv_("Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + a_dim1],
|
|
|
|
lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[
|
|
|
|
i__ * y_dim1 + 1], &c__1);
|
|
|
|
i__2 = *n - i__;
|
|
|
|
i__3 = i__ - 1;
|
|
|
|
sgemv_("No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 +
|
|
|
|
y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[
|
|
|
|
i__ + 1 + i__ * y_dim1], &c__1);
|
|
|
|
i__2 = *m - i__;
|
|
|
|
sgemv_("Transpose", &i__2, &i__, &c_b5, &x[i__ + 1 + x_dim1],
|
|
|
|
ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[
|
|
|
|
i__ * y_dim1 + 1], &c__1);
|
|
|
|
i__2 = *n - i__;
|
|
|
|
sgemv_("Transpose", &i__, &i__2, &c_b4, &a[(i__ + 1) * a_dim1
|
|
|
|
+ 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[i__
|
|
|
|
+ 1 + i__ * y_dim1], &c__1);
|
|
|
|
i__2 = *n - i__;
|
|
|
|
sscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
|
|
|
|
}
|
|
|
|
/* L20: */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* End of SLABRD */
|
|
|
|
|
|
|
|
} /* slabrd_ */
|