Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

530 lines
16 KiB

/* dlalsd.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "clapack.h"
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b6 = 0.;
static integer c__0 = 0;
static doublereal c_b11 = 1.;
/* Subroutine */ int dlalsd_(char *uplo, integer *smlsiz, integer *n, integer
*nrhs, doublereal *d__, doublereal *e, doublereal *b, integer *ldb,
doublereal *rcond, integer *rank, doublereal *work, integer *iwork,
integer *info)
{
/* System generated locals */
integer b_dim1, b_offset, i__1, i__2;
doublereal d__1;
/* Builtin functions */
double log(doublereal), d_sign(doublereal *, doublereal *);
/* Local variables */
integer c__, i__, j, k;
doublereal r__;
integer s, u, z__;
doublereal cs;
integer bx;
doublereal sn;
integer st, vt, nm1, st1;
doublereal eps;
integer iwk;
doublereal tol;
integer difl, difr;
doublereal rcnd;
integer perm, nsub;
extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, doublereal *);
integer nlvl, sqre, bxst;
extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
integer *, doublereal *, doublereal *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *),
dcopy_(integer *, doublereal *, integer *, doublereal *, integer
*);
integer poles, sizei, nsize, nwork, icmpq1, icmpq2;
extern doublereal dlamch_(char *);
extern /* Subroutine */ int dlasda_(integer *, integer *, integer *,
integer *, doublereal *, doublereal *, doublereal *, integer *,
doublereal *, integer *, doublereal *, doublereal *, doublereal *,
doublereal *, integer *, integer *, integer *, integer *,
doublereal *, doublereal *, doublereal *, doublereal *, integer *,
integer *), dlalsa_(integer *, integer *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
doublereal *, doublereal *, integer *, integer *, integer *,
integer *, doublereal *, doublereal *, doublereal *, doublereal *,
integer *, integer *), dlascl_(char *, integer *, integer *,
doublereal *, doublereal *, integer *, integer *, doublereal *,
integer *, integer *);
extern integer idamax_(integer *, doublereal *, integer *);
extern /* Subroutine */ int dlasdq_(char *, integer *, integer *, integer
*, integer *, integer *, doublereal *, doublereal *, doublereal *,
integer *, doublereal *, integer *, doublereal *, integer *,
doublereal *, integer *), dlacpy_(char *, integer *,
integer *, doublereal *, integer *, doublereal *, integer *), dlartg_(doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *), dlaset_(char *, integer *, integer *,
doublereal *, doublereal *, doublereal *, integer *),
xerbla_(char *, integer *);
integer givcol;
extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
extern /* Subroutine */ int dlasrt_(char *, integer *, doublereal *,
integer *);
doublereal orgnrm;
integer givnum, givptr, smlszp;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DLALSD uses the singular value decomposition of A to solve the least */
/* squares problem of finding X to minimize the Euclidean norm of each */
/* column of A*X-B, where A is N-by-N upper bidiagonal, and X and B */
/* are N-by-NRHS. The solution X overwrites B. */
/* The singular values of A smaller than RCOND times the largest */
/* singular value are treated as zero in solving the least squares */
/* problem; in this case a minimum norm solution is returned. */
/* The actual singular values are returned in D in ascending order. */
/* This code makes very mild assumptions about floating point */
/* arithmetic. It will work on machines with a guard digit in */
/* add/subtract, or on those binary machines without guard digits */
/* which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
/* It could conceivably fail on hexadecimal or decimal machines */
/* without guard digits, but we know of none. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': D and E define an upper bidiagonal matrix. */
/* = 'L': D and E define a lower bidiagonal matrix. */
/* SMLSIZ (input) INTEGER */
/* The maximum size of the subproblems at the bottom of the */
/* computation tree. */
/* N (input) INTEGER */
/* The dimension of the bidiagonal matrix. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of columns of B. NRHS must be at least 1. */
/* D (input/output) DOUBLE PRECISION array, dimension (N) */
/* On entry D contains the main diagonal of the bidiagonal */
/* matrix. On exit, if INFO = 0, D contains its singular values. */
/* E (input/output) DOUBLE PRECISION array, dimension (N-1) */
/* Contains the super-diagonal entries of the bidiagonal matrix. */
/* On exit, E has been destroyed. */
/* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/* On input, B contains the right hand sides of the least */
/* squares problem. On output, B contains the solution X. */
/* LDB (input) INTEGER */
/* The leading dimension of B in the calling subprogram. */
/* LDB must be at least max(1,N). */
/* RCOND (input) DOUBLE PRECISION */
/* The singular values of A less than or equal to RCOND times */
/* the largest singular value are treated as zero in solving */
/* the least squares problem. If RCOND is negative, */
/* machine precision is used instead. */
/* For example, if diag(S)*X=B were the least squares problem, */
/* where diag(S) is a diagonal matrix of singular values, the */
/* solution would be X(i) = B(i) / S(i) if S(i) is greater than */
/* RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to */
/* RCOND*max(S). */
/* RANK (output) INTEGER */
/* The number of singular values of A greater than RCOND times */
/* the largest singular value. */
/* WORK (workspace) DOUBLE PRECISION array, dimension at least */
/* (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2), */
/* where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1). */
/* IWORK (workspace) INTEGER array, dimension at least */
/* (3*N*NLVL + 11*N) */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: The algorithm failed to compute an singular value while */
/* working on the submatrix lying in rows and columns */
/* INFO/(N+1) through MOD(INFO,N+1). */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Ming Gu and Ren-Cang Li, Computer Science Division, University of */
/* California at Berkeley, USA */
/* Osni Marques, LBNL/NERSC, USA */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--e;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
--work;
--iwork;
/* Function Body */
*info = 0;
if (*n < 0) {
*info = -3;
} else if (*nrhs < 1) {
*info = -4;
} else if (*ldb < 1 || *ldb < *n) {
*info = -8;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DLALSD", &i__1);
return 0;
}
eps = dlamch_("Epsilon");
/* Set up the tolerance. */
if (*rcond <= 0. || *rcond >= 1.) {
rcnd = eps;
} else {
rcnd = *rcond;
}
*rank = 0;
/* Quick return if possible. */
if (*n == 0) {
return 0;
} else if (*n == 1) {
if (d__[1] == 0.) {
dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);
} else {
*rank = 1;
dlascl_("G", &c__0, &c__0, &d__[1], &c_b11, &c__1, nrhs, &b[
b_offset], ldb, info);
d__[1] = abs(d__[1]);
}
return 0;
}
/* Rotate the matrix if it is lower bidiagonal. */
if (*(unsigned char *)uplo == 'L') {
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
dlartg_(&d__[i__], &e[i__], &cs, &sn, &r__);
d__[i__] = r__;
e[i__] = sn * d__[i__ + 1];
d__[i__ + 1] = cs * d__[i__ + 1];
if (*nrhs == 1) {
drot_(&c__1, &b[i__ + b_dim1], &c__1, &b[i__ + 1 + b_dim1], &
c__1, &cs, &sn);
} else {
work[(i__ << 1) - 1] = cs;
work[i__ * 2] = sn;
}
/* L10: */
}
if (*nrhs > 1) {
i__1 = *nrhs;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = *n - 1;
for (j = 1; j <= i__2; ++j) {
cs = work[(j << 1) - 1];
sn = work[j * 2];
drot_(&c__1, &b[j + i__ * b_dim1], &c__1, &b[j + 1 + i__ *
b_dim1], &c__1, &cs, &sn);
/* L20: */
}
/* L30: */
}
}
}
/* Scale. */
nm1 = *n - 1;
orgnrm = dlanst_("M", n, &d__[1], &e[1]);
if (orgnrm == 0.) {
dlaset_("A", n, nrhs, &c_b6, &c_b6, &b[b_offset], ldb);
return 0;
}
dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, &c__1, &d__[1], n, info);
dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, &nm1, &c__1, &e[1], &nm1,
info);
/* If N is smaller than the minimum divide size SMLSIZ, then solve */
/* the problem with another solver. */
if (*n <= *smlsiz) {
nwork = *n * *n + 1;
dlaset_("A", n, n, &c_b6, &c_b11, &work[1], n);
dlasdq_("U", &c__0, n, n, &c__0, nrhs, &d__[1], &e[1], &work[1], n, &
work[1], n, &b[b_offset], ldb, &work[nwork], info);
if (*info != 0) {
return 0;
}
tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (d__[i__] <= tol) {
dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &b[i__ + b_dim1], ldb);
} else {
dlascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &b[
i__ + b_dim1], ldb, info);
++(*rank);
}
/* L40: */
}
dgemm_("T", "N", n, nrhs, n, &c_b11, &work[1], n, &b[b_offset], ldb, &
c_b6, &work[nwork], n);
dlacpy_("A", n, nrhs, &work[nwork], n, &b[b_offset], ldb);
/* Unscale. */
dlascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n,
info);
dlasrt_("D", n, &d__[1], info);
dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset],
ldb, info);
return 0;
}
/* Book-keeping and setting up some constants. */
nlvl = (integer) (log((doublereal) (*n) / (doublereal) (*smlsiz + 1)) /
log(2.)) + 1;
smlszp = *smlsiz + 1;
u = 1;
vt = *smlsiz * *n + 1;
difl = vt + smlszp * *n;
difr = difl + nlvl * *n;
z__ = difr + (nlvl * *n << 1);
c__ = z__ + nlvl * *n;
s = c__ + *n;
poles = s + *n;
givnum = poles + (nlvl << 1) * *n;
bx = givnum + (nlvl << 1) * *n;
nwork = bx + *n * *nrhs;
sizei = *n + 1;
k = sizei + *n;
givptr = k + *n;
perm = givptr + *n;
givcol = perm + nlvl * *n;
iwk = givcol + (nlvl * *n << 1);
st = 1;
sqre = 0;
icmpq1 = 1;
icmpq2 = 0;
nsub = 0;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if ((d__1 = d__[i__], abs(d__1)) < eps) {
d__[i__] = d_sign(&eps, &d__[i__]);
}
/* L50: */
}
i__1 = nm1;
for (i__ = 1; i__ <= i__1; ++i__) {
if ((d__1 = e[i__], abs(d__1)) < eps || i__ == nm1) {
++nsub;
iwork[nsub] = st;
/* Subproblem found. First determine its size and then */
/* apply divide and conquer on it. */
if (i__ < nm1) {
/* A subproblem with E(I) small for I < NM1. */
nsize = i__ - st + 1;
iwork[sizei + nsub - 1] = nsize;
} else if ((d__1 = e[i__], abs(d__1)) >= eps) {
/* A subproblem with E(NM1) not too small but I = NM1. */
nsize = *n - st + 1;
iwork[sizei + nsub - 1] = nsize;
} else {
/* A subproblem with E(NM1) small. This implies an */
/* 1-by-1 subproblem at D(N), which is not solved */
/* explicitly. */
nsize = i__ - st + 1;
iwork[sizei + nsub - 1] = nsize;
++nsub;
iwork[nsub] = *n;
iwork[sizei + nsub - 1] = 1;
dcopy_(nrhs, &b[*n + b_dim1], ldb, &work[bx + nm1], n);
}
st1 = st - 1;
if (nsize == 1) {
/* This is a 1-by-1 subproblem and is not solved */
/* explicitly. */
dcopy_(nrhs, &b[st + b_dim1], ldb, &work[bx + st1], n);
} else if (nsize <= *smlsiz) {
/* This is a small subproblem and is solved by DLASDQ. */
dlaset_("A", &nsize, &nsize, &c_b6, &c_b11, &work[vt + st1],
n);
dlasdq_("U", &c__0, &nsize, &nsize, &c__0, nrhs, &d__[st], &e[
st], &work[vt + st1], n, &work[nwork], n, &b[st +
b_dim1], ldb, &work[nwork], info);
if (*info != 0) {
return 0;
}
dlacpy_("A", &nsize, nrhs, &b[st + b_dim1], ldb, &work[bx +
st1], n);
} else {
/* A large problem. Solve it using divide and conquer. */
dlasda_(&icmpq1, smlsiz, &nsize, &sqre, &d__[st], &e[st], &
work[u + st1], n, &work[vt + st1], &iwork[k + st1], &
work[difl + st1], &work[difr + st1], &work[z__ + st1],
&work[poles + st1], &iwork[givptr + st1], &iwork[
givcol + st1], n, &iwork[perm + st1], &work[givnum +
st1], &work[c__ + st1], &work[s + st1], &work[nwork],
&iwork[iwk], info);
if (*info != 0) {
return 0;
}
bxst = bx + st1;
dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &b[st + b_dim1], ldb, &
work[bxst], n, &work[u + st1], n, &work[vt + st1], &
iwork[k + st1], &work[difl + st1], &work[difr + st1],
&work[z__ + st1], &work[poles + st1], &iwork[givptr +
st1], &iwork[givcol + st1], n, &iwork[perm + st1], &
work[givnum + st1], &work[c__ + st1], &work[s + st1],
&work[nwork], &iwork[iwk], info);
if (*info != 0) {
return 0;
}
}
st = i__ + 1;
}
/* L60: */
}
/* Apply the singular values and treat the tiny ones as zero. */
tol = rcnd * (d__1 = d__[idamax_(n, &d__[1], &c__1)], abs(d__1));
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Some of the elements in D can be negative because 1-by-1 */
/* subproblems were not solved explicitly. */
if ((d__1 = d__[i__], abs(d__1)) <= tol) {
dlaset_("A", &c__1, nrhs, &c_b6, &c_b6, &work[bx + i__ - 1], n);
} else {
++(*rank);
dlascl_("G", &c__0, &c__0, &d__[i__], &c_b11, &c__1, nrhs, &work[
bx + i__ - 1], n, info);
}
d__[i__] = (d__1 = d__[i__], abs(d__1));
/* L70: */
}
/* Now apply back the right singular vectors. */
icmpq2 = 1;
i__1 = nsub;
for (i__ = 1; i__ <= i__1; ++i__) {
st = iwork[i__];
st1 = st - 1;
nsize = iwork[sizei + i__ - 1];
bxst = bx + st1;
if (nsize == 1) {
dcopy_(nrhs, &work[bxst], n, &b[st + b_dim1], ldb);
} else if (nsize <= *smlsiz) {
dgemm_("T", "N", &nsize, nrhs, &nsize, &c_b11, &work[vt + st1], n,
&work[bxst], n, &c_b6, &b[st + b_dim1], ldb);
} else {
dlalsa_(&icmpq2, smlsiz, &nsize, nrhs, &work[bxst], n, &b[st +
b_dim1], ldb, &work[u + st1], n, &work[vt + st1], &iwork[
k + st1], &work[difl + st1], &work[difr + st1], &work[z__
+ st1], &work[poles + st1], &iwork[givptr + st1], &iwork[
givcol + st1], n, &iwork[perm + st1], &work[givnum + st1],
&work[c__ + st1], &work[s + st1], &work[nwork], &iwork[
iwk], info);
if (*info != 0) {
return 0;
}
}
/* L80: */
}
/* Unscale and sort the singular values. */
dlascl_("G", &c__0, &c__0, &c_b11, &orgnrm, n, &c__1, &d__[1], n, info);
dlasrt_("D", n, &d__[1], info);
dlascl_("G", &c__0, &c__0, &orgnrm, &c_b11, n, nrhs, &b[b_offset], ldb,
info);
return 0;
/* End of DLALSD */
} /* dlalsd_ */