|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "_cxts.h"
|
|
|
|
|
|
|
|
static const int default_test_case_count = 500;
|
|
|
|
static const int default_max_log_array_size = 9;
|
|
|
|
|
|
|
|
CvArrTest::CvArrTest( const char* _test_name, const char* _test_funcs, const char* _test_descr ) :
|
|
|
|
CvTest( _test_name, _test_funcs, _test_descr )
|
|
|
|
{
|
|
|
|
test_case_count = default_test_case_count;
|
|
|
|
|
|
|
|
iplimage_allowed = true;
|
|
|
|
cvmat_allowed = true;
|
|
|
|
optional_mask = false;
|
|
|
|
min_log_array_size = 0;
|
|
|
|
max_log_array_size = default_max_log_array_size;
|
|
|
|
element_wise_relative_error = true;
|
|
|
|
|
|
|
|
size_list = 0;
|
|
|
|
whole_size_list = 0;
|
|
|
|
depth_list = 0;
|
|
|
|
cn_list = 0;
|
|
|
|
|
|
|
|
max_arr = MAX_ARR;
|
|
|
|
test_array = new CvTestPtrVec[max_arr];
|
|
|
|
max_hdr = 0;
|
|
|
|
hdr = 0;
|
|
|
|
|
|
|
|
support_testing_modes = CvTS::CORRECTNESS_CHECK_MODE + CvTS::TIMING_MODE;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
CvArrTest::~CvArrTest()
|
|
|
|
{
|
|
|
|
clear();
|
|
|
|
delete[] test_array;
|
|
|
|
test_array = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CvArrTest::write_default_params( CvFileStorage* fs )
|
|
|
|
{
|
|
|
|
int code = CvTest::write_default_params( fs );
|
|
|
|
if( code < 0 )
|
|
|
|
return code;
|
|
|
|
|
|
|
|
if( ts->get_testing_mode() == CvTS::CORRECTNESS_CHECK_MODE )
|
|
|
|
{
|
|
|
|
write_param( fs, "test_case_count", test_case_count );
|
|
|
|
write_param( fs, "min_log_array_size", min_log_array_size );
|
|
|
|
write_param( fs, "max_log_array_size", max_log_array_size );
|
|
|
|
}
|
|
|
|
else if( ts->get_testing_mode() == CvTS::TIMING_MODE )
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
start_write_param( fs ); // make sure we have written the entry header containing the test name
|
|
|
|
if( size_list )
|
|
|
|
{
|
|
|
|
cvStartWriteStruct( fs, "size", CV_NODE_SEQ+CV_NODE_FLOW );
|
|
|
|
for( i = 0; size_list[i].width >= 0; i++ )
|
|
|
|
{
|
|
|
|
cvStartWriteStruct( fs, 0, CV_NODE_SEQ+CV_NODE_FLOW );
|
|
|
|
cvWriteInt( fs, 0, size_list[i].width );
|
|
|
|
cvWriteInt( fs, 0, size_list[i].height );
|
|
|
|
if( whole_size_list &&
|
|
|
|
(whole_size_list[i].width > size_list[i].width ||
|
|
|
|
whole_size_list[i].height > size_list[i].height) )
|
|
|
|
{
|
|
|
|
cvWriteInt( fs, 0, whole_size_list[i].width );
|
|
|
|
cvWriteInt( fs, 0, whole_size_list[i].height );
|
|
|
|
}
|
|
|
|
cvEndWriteStruct( fs );
|
|
|
|
}
|
|
|
|
cvEndWriteStruct(fs);
|
|
|
|
}
|
|
|
|
|
|
|
|
if( depth_list )
|
|
|
|
{
|
|
|
|
cvStartWriteStruct( fs, "depth", CV_NODE_SEQ+CV_NODE_FLOW );
|
|
|
|
for( i = 0; depth_list[i] >= 0; i++ )
|
|
|
|
cvWriteString( fs, 0, cvTsGetTypeName(depth_list[i]) );
|
|
|
|
cvEndWriteStruct(fs);
|
|
|
|
}
|
|
|
|
|
|
|
|
write_int_list( fs, "channels", cn_list, -1, -1 );
|
|
|
|
|
|
|
|
if( optional_mask )
|
|
|
|
{
|
|
|
|
static const int use_mask[] = { 0, 1 };
|
|
|
|
write_int_list( fs, "use_mask", use_mask, 2 );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvArrTest::clear()
|
|
|
|
{
|
|
|
|
if( test_array )
|
|
|
|
{
|
|
|
|
int i, j, n;
|
|
|
|
|
|
|
|
for( i = 0; i < max_arr; i++ )
|
|
|
|
{
|
|
|
|
n = test_array[i].size();
|
|
|
|
for( j = 0; j < n; j++ )
|
|
|
|
cvRelease( &test_array[i][j] );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
delete[] hdr;
|
|
|
|
hdr = 0;
|
|
|
|
max_hdr = 0;
|
|
|
|
CvTest::clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CvArrTest::read_params( CvFileStorage* fs )
|
|
|
|
{
|
|
|
|
int code = CvTest::read_params( fs );
|
|
|
|
if( code < 0 )
|
|
|
|
return code;
|
|
|
|
|
|
|
|
if( ts->get_testing_mode() == CvTS::CORRECTNESS_CHECK_MODE )
|
|
|
|
{
|
|
|
|
min_log_array_size = cvReadInt( find_param( fs, "min_log_array_size" ), min_log_array_size );
|
|
|
|
max_log_array_size = cvReadInt( find_param( fs, "max_log_array_size" ), max_log_array_size );
|
|
|
|
test_case_count = cvReadInt( find_param( fs, "test_case_count" ), test_case_count );
|
|
|
|
test_case_count = cvRound( test_case_count*ts->get_test_case_count_scale() );
|
|
|
|
|
|
|
|
min_log_array_size = cvTsClipInt( min_log_array_size, 0, 20 );
|
|
|
|
max_log_array_size = cvTsClipInt( max_log_array_size, min_log_array_size, 20 );
|
|
|
|
test_case_count = cvTsClipInt( test_case_count, 0, 100000 );
|
|
|
|
}
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvArrTest::get_test_array_types_and_sizes( int /*test_case_idx*/, CvSize** sizes, int** types )
|
|
|
|
{
|
|
|
|
CvRNG* rng = ts->get_rng();
|
|
|
|
CvSize size;
|
|
|
|
double val;
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
val = cvRandReal(rng) * (max_log_array_size - min_log_array_size) + min_log_array_size;
|
|
|
|
size.width = cvRound( exp(val*CV_LOG2) );
|
|
|
|
val = cvRandReal(rng) * (max_log_array_size - min_log_array_size) + min_log_array_size;
|
|
|
|
size.height = cvRound( exp(val*CV_LOG2) );
|
|
|
|
|
|
|
|
for( i = 0; i < max_arr; i++ )
|
|
|
|
{
|
|
|
|
int count = test_array[i].size();
|
|
|
|
for( j = 0; j < count; j++ )
|
|
|
|
{
|
|
|
|
sizes[i][j] = size;
|
|
|
|
types[i][j] = CV_8UC1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvArrTest::get_timing_test_array_types_and_sizes( int /*test_case_idx*/, CvSize** sizes, int** types,
|
|
|
|
CvSize** whole_sizes, bool *are_images )
|
|
|
|
{
|
|
|
|
const CvFileNode* size_node = find_timing_param( "size" );
|
|
|
|
const CvFileNode* depth_node = find_timing_param( "depth" );
|
|
|
|
const CvFileNode* channels_node = find_timing_param( "channels" );
|
|
|
|
int i, j;
|
|
|
|
int depth = 0, channels = 1;
|
|
|
|
CvSize size = {1,1}, whole_size = size;
|
|
|
|
|
|
|
|
if( size_node && CV_NODE_IS_SEQ(size_node->tag) )
|
|
|
|
{
|
|
|
|
CvSeq* seq = size_node->data.seq;
|
|
|
|
size.width = cvReadInt((const CvFileNode*)cvGetSeqElem(seq,0), 1);
|
|
|
|
size.height = cvReadInt((const CvFileNode*)cvGetSeqElem(seq,1), 1);
|
|
|
|
whole_size = size;
|
|
|
|
if( seq->total > 2 )
|
|
|
|
{
|
|
|
|
whole_size.width = cvReadInt((const CvFileNode*)cvGetSeqElem(seq,2), 1);
|
|
|
|
whole_size.height = cvReadInt((const CvFileNode*)cvGetSeqElem(seq,3), 1);
|
|
|
|
whole_size.width = MAX( whole_size.width, size.width );
|
|
|
|
whole_size.height = MAX( whole_size.height, size.height );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( depth_node && CV_NODE_IS_STRING(depth_node->tag) )
|
|
|
|
{
|
|
|
|
depth = cvTsTypeByName( depth_node->data.str.ptr );
|
|
|
|
if( depth < 0 || depth > CV_64F )
|
|
|
|
depth = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( channels_node && CV_NODE_IS_INT(channels_node->tag) )
|
|
|
|
{
|
|
|
|
channels = cvReadInt( channels_node, 1 );
|
|
|
|
if( channels < 0 || channels > CV_CN_MAX )
|
|
|
|
channels = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
for( i = 0; i < max_arr; i++ )
|
|
|
|
{
|
|
|
|
int count = test_array[i].size();
|
|
|
|
for( j = 0; j < count; j++ )
|
|
|
|
{
|
|
|
|
sizes[i][j] = size;
|
|
|
|
whole_sizes[i][j] = whole_size;
|
|
|
|
if( i != MASK )
|
|
|
|
types[i][j] = CV_MAKETYPE(depth,channels);
|
|
|
|
else
|
|
|
|
types[i][j] = CV_8UC1;
|
|
|
|
if( i == REF_OUTPUT || i == REF_INPUT_OUTPUT )
|
|
|
|
sizes[i][j] = cvSize(0,0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( are_images )
|
|
|
|
*are_images = false; // by default CvMat is used in performance tests
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvArrTest::print_timing_params( int /*test_case_idx*/, char* ptr, int params_left )
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
for( i = 0; i < params_left; i++ )
|
|
|
|
{
|
|
|
|
sprintf( ptr, "-," );
|
|
|
|
ptr += 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvArrTest::print_time( int test_case_idx, double time_clocks, double time_cpu_clocks )
|
|
|
|
{
|
|
|
|
int in_type = -1, out_type = -1;
|
|
|
|
CvSize size = { -1, -1 };
|
|
|
|
const CvFileNode* size_node = find_timing_param( "size" );
|
|
|
|
char str[1024], *ptr = str;
|
|
|
|
int len;
|
|
|
|
bool have_mask;
|
|
|
|
double cpe;
|
|
|
|
|
|
|
|
if( size_node )
|
|
|
|
{
|
|
|
|
if( !CV_NODE_IS_SEQ(size_node->tag) )
|
|
|
|
{
|
|
|
|
size.width = cvReadInt(size_node,-1);
|
|
|
|
size.height = 1;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
size.width = cvReadInt((const CvFileNode*)cvGetSeqElem(size_node->data.seq,0),-1);
|
|
|
|
size.height = cvReadInt((const CvFileNode*)cvGetSeqElem(size_node->data.seq,1),-1);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( test_array[INPUT].size() )
|
|
|
|
{
|
|
|
|
in_type = CV_MAT_TYPE(test_mat[INPUT][0].type);
|
|
|
|
if( size.width == -1 )
|
|
|
|
size = cvGetMatSize(&test_mat[INPUT][0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
if( test_array[OUTPUT].size() )
|
|
|
|
{
|
|
|
|
out_type = CV_MAT_TYPE(test_mat[OUTPUT][0].type);
|
|
|
|
if( in_type < 0 )
|
|
|
|
in_type = out_type;
|
|
|
|
if( size.width == -1 )
|
|
|
|
size = cvGetMatSize(&test_mat[OUTPUT][0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
if( out_type < 0 && test_array[INPUT_OUTPUT].size() )
|
|
|
|
{
|
|
|
|
out_type = CV_MAT_TYPE(test_mat[INPUT_OUTPUT][0].type);
|
|
|
|
if( in_type < 0 )
|
|
|
|
in_type = out_type;
|
|
|
|
if( size.width == -1 )
|
|
|
|
size = cvGetMatSize(&test_mat[INPUT_OUTPUT][0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
have_mask = test_array[MASK].size() > 0 && test_array[MASK][0] != 0;
|
|
|
|
|
|
|
|
if( in_type < 0 && out_type < 0 )
|
|
|
|
return;
|
|
|
|
|
|
|
|
if( out_type < 0 )
|
|
|
|
out_type = in_type;
|
|
|
|
|
|
|
|
ptr = strchr( (char*)tested_functions, ',' );
|
|
|
|
if( ptr )
|
|
|
|
{
|
|
|
|
len = (int)(ptr - tested_functions);
|
|
|
|
strncpy( str, tested_functions, len );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
len = (int)strlen( tested_functions );
|
|
|
|
strcpy( str, tested_functions );
|
|
|
|
}
|
|
|
|
ptr = str + len;
|
|
|
|
*ptr = '\0';
|
|
|
|
if( have_mask )
|
|
|
|
{
|
|
|
|
sprintf( ptr, "(Mask)" );
|
|
|
|
ptr += strlen(ptr);
|
|
|
|
}
|
|
|
|
*ptr++ = ',';
|
|
|
|
sprintf( ptr, "%s", cvTsGetTypeName(in_type) );
|
|
|
|
ptr += strlen(ptr);
|
|
|
|
|
|
|
|
if( CV_MAT_DEPTH(out_type) != CV_MAT_DEPTH(in_type) )
|
|
|
|
{
|
|
|
|
sprintf( ptr, "%s", cvTsGetTypeName(out_type) );
|
|
|
|
ptr += strlen(ptr);
|
|
|
|
}
|
|
|
|
*ptr++ = ',';
|
|
|
|
|
|
|
|
sprintf( ptr, "C%d", CV_MAT_CN(in_type) );
|
|
|
|
ptr += strlen(ptr);
|
|
|
|
|
|
|
|
if( CV_MAT_CN(out_type) != CV_MAT_CN(in_type) )
|
|
|
|
{
|
|
|
|
sprintf( ptr, "C%d", CV_MAT_CN(out_type) );
|
|
|
|
ptr += strlen(ptr);
|
|
|
|
}
|
|
|
|
*ptr++ = ',';
|
|
|
|
|
|
|
|
sprintf( ptr, "%dx%d,", size.width, size.height );
|
|
|
|
ptr += strlen(ptr);
|
|
|
|
|
|
|
|
print_timing_params( test_case_idx, ptr );
|
|
|
|
ptr += strlen(ptr);
|
|
|
|
cpe = time_cpu_clocks / ((double)size.width * size.height);
|
|
|
|
if( cpe >= 100 )
|
|
|
|
sprintf( ptr, "%.0f,", cpe );
|
|
|
|
else
|
|
|
|
sprintf( ptr, "%.1f,", cpe );
|
|
|
|
ptr += strlen(ptr);
|
|
|
|
sprintf( ptr, "%g", time_clocks*1e6/cv::getTickFrequency() );
|
|
|
|
|
|
|
|
ts->printf( CvTS::CSV, "%s\n", str );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
static const int icvTsTypeToDepth[] =
|
|
|
|
{
|
|
|
|
IPL_DEPTH_8U, IPL_DEPTH_8S, IPL_DEPTH_16U, IPL_DEPTH_16S,
|
|
|
|
IPL_DEPTH_32S, IPL_DEPTH_32F, IPL_DEPTH_64F
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
int CvArrTest::prepare_test_case( int test_case_idx )
|
|
|
|
{
|
|
|
|
int code = 1;
|
|
|
|
CvSize** sizes = (CvSize**)malloc( max_arr*sizeof(sizes[0]) );
|
|
|
|
CvSize** whole_sizes = (CvSize**)malloc( max_arr*sizeof(whole_sizes[0]) );
|
|
|
|
int** types = (int**)malloc( max_arr*sizeof(types[0]) );
|
|
|
|
int i, j, total = 0;
|
|
|
|
CvRNG* rng = ts->get_rng();
|
|
|
|
bool is_image = false;
|
|
|
|
bool is_timing_test = false;
|
|
|
|
|
|
|
|
CV_FUNCNAME( "CvArrTest::prepare_test_case" );
|
|
|
|
|
|
|
|
__BEGIN__;
|
|
|
|
|
|
|
|
is_timing_test = ts->get_testing_mode() == CvTS::TIMING_MODE;
|
|
|
|
|
|
|
|
if( is_timing_test )
|
|
|
|
{
|
|
|
|
if( !get_next_timing_param_tuple() )
|
|
|
|
{
|
|
|
|
code = -1;
|
|
|
|
EXIT;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for( i = 0; i < max_arr; i++ )
|
|
|
|
{
|
|
|
|
int count = test_array[i].size();
|
|
|
|
count = MAX(count, 1);
|
|
|
|
sizes[i] = (CvSize*)malloc( count*sizeof(sizes[i][0]) );
|
|
|
|
types[i] = (int*)malloc( count*sizeof(types[i][0]) );
|
|
|
|
whole_sizes[i] = (CvSize*)malloc( count*sizeof(whole_sizes[i][0]) );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( !is_timing_test )
|
|
|
|
get_test_array_types_and_sizes( test_case_idx, sizes, types );
|
|
|
|
else
|
|
|
|
{
|
|
|
|
get_timing_test_array_types_and_sizes( test_case_idx, sizes, types,
|
|
|
|
whole_sizes, &is_image );
|
|
|
|
}
|
|
|
|
|
|
|
|
for( i = 0; i < max_arr; i++ )
|
|
|
|
{
|
|
|
|
int count = test_array[i].size();
|
|
|
|
total += count;
|
|
|
|
for( j = 0; j < count; j++ )
|
|
|
|
{
|
|
|
|
unsigned t = cvRandInt(rng);
|
|
|
|
bool create_mask = true, use_roi = false;
|
|
|
|
CvSize size = sizes[i][j], whole_size = size;
|
|
|
|
CvRect roi = {0,0,0,0};
|
|
|
|
|
|
|
|
if( !is_timing_test )
|
|
|
|
{
|
|
|
|
is_image = !cvmat_allowed ? true : iplimage_allowed ? (t & 1) != 0 : false;
|
|
|
|
create_mask = (t & 6) == 0; // ~ each of 3 tests will use mask
|
|
|
|
use_roi = (t & 8) != 0;
|
|
|
|
if( use_roi )
|
|
|
|
{
|
|
|
|
whole_size.width += cvRandInt(rng) % 10;
|
|
|
|
whole_size.height += cvRandInt(rng) % 10;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
whole_size = whole_sizes[i][j];
|
|
|
|
use_roi = whole_size.width != size.width || whole_size.height != size.height;
|
|
|
|
create_mask = cvReadInt(find_timing_param( "use_mask" ),0) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
cvRelease( &test_array[i][j] );
|
|
|
|
if( size.width > 0 && size.height > 0 &&
|
|
|
|
types[i][j] >= 0 && (i != MASK || create_mask) )
|
|
|
|
{
|
|
|
|
if( use_roi )
|
|
|
|
{
|
|
|
|
roi.width = size.width;
|
|
|
|
roi.height = size.height;
|
|
|
|
if( whole_size.width > size.width )
|
|
|
|
{
|
|
|
|
if( !is_timing_test )
|
|
|
|
roi.x = cvRandInt(rng) % (whole_size.width - size.width);
|
|
|
|
else
|
|
|
|
roi.x = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( whole_size.height > size.height )
|
|
|
|
{
|
|
|
|
if( !is_timing_test )
|
|
|
|
roi.y = cvRandInt(rng) % (whole_size.height - size.height);
|
|
|
|
else
|
|
|
|
roi.y = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( is_image )
|
|
|
|
{
|
|
|
|
CV_CALL( test_array[i][j] = cvCreateImage( whole_size,
|
|
|
|
icvTsTypeToDepth[CV_MAT_DEPTH(types[i][j])],
|
|
|
|
CV_MAT_CN(types[i][j]) ));
|
|
|
|
if( use_roi )
|
|
|
|
cvSetImageROI( (IplImage*)test_array[i][j], roi );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
CV_CALL( test_array[i][j] = cvCreateMat( whole_size.height,
|
|
|
|
whole_size.width, types[i][j] ));
|
|
|
|
if( use_roi )
|
|
|
|
{
|
|
|
|
CvMat submat, *mat = (CvMat*)test_array[i][j];
|
|
|
|
cvGetSubRect( test_array[i][j], &submat, roi );
|
|
|
|
submat.refcount = mat->refcount;
|
|
|
|
*mat = submat;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if( total > max_hdr )
|
|
|
|
{
|
|
|
|
delete hdr;
|
|
|
|
max_hdr = total;
|
|
|
|
hdr = new CvMat[max_hdr];
|
|
|
|
}
|
|
|
|
|
|
|
|
total = 0;
|
|
|
|
for( i = 0; i < max_arr; i++ )
|
|
|
|
{
|
|
|
|
int count = test_array[i].size();
|
|
|
|
test_mat[i] = count > 0 ? hdr + total : 0;
|
|
|
|
for( j = 0; j < count; j++ )
|
|
|
|
{
|
|
|
|
CvArr* arr = test_array[i][j];
|
|
|
|
CvMat* mat = &test_mat[i][j];
|
|
|
|
if( !arr )
|
|
|
|
memset( mat, 0, sizeof(*mat) );
|
|
|
|
else if( CV_IS_MAT( arr ))
|
|
|
|
{
|
|
|
|
*mat = *(CvMat*)arr;
|
|
|
|
mat->refcount = 0;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
cvGetMat( arr, mat, 0, 0 );
|
|
|
|
if( mat->data.ptr )
|
|
|
|
fill_array( test_case_idx, i, j, mat );
|
|
|
|
}
|
|
|
|
total += count;
|
|
|
|
}
|
|
|
|
|
|
|
|
__END__;
|
|
|
|
|
|
|
|
for( i = 0; i < max_arr; i++ )
|
|
|
|
{
|
|
|
|
if( sizes )
|
|
|
|
free( sizes[i] );
|
|
|
|
if( whole_sizes )
|
|
|
|
free( whole_sizes[i] );
|
|
|
|
if( types )
|
|
|
|
free( types[i] );
|
|
|
|
}
|
|
|
|
|
|
|
|
free( sizes );
|
|
|
|
free( whole_sizes );
|
|
|
|
free( types );
|
|
|
|
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvArrTest::get_minmax_bounds( int i, int /*j*/, int type, CvScalar* low, CvScalar* high )
|
|
|
|
{
|
|
|
|
double l, u;
|
|
|
|
|
|
|
|
if( i == MASK )
|
|
|
|
{
|
|
|
|
l = -2;
|
|
|
|
u = 2;
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
l = cvTsMinVal(type);
|
|
|
|
u = cvTsMaxVal(type);
|
|
|
|
}
|
|
|
|
|
|
|
|
*low = cvScalarAll(l);
|
|
|
|
*high = cvScalarAll(u);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvArrTest::fill_array( int /*test_case_idx*/, int i, int j, CvMat* arr )
|
|
|
|
{
|
|
|
|
if( i == REF_INPUT_OUTPUT )
|
|
|
|
cvTsCopy( &test_mat[INPUT_OUTPUT][j], arr, 0 );
|
|
|
|
else if( i == INPUT || i == INPUT_OUTPUT || i == MASK )
|
|
|
|
{
|
|
|
|
int type = cvGetElemType( arr );
|
|
|
|
CvScalar low, high;
|
|
|
|
|
|
|
|
get_minmax_bounds( i, j, type, &low, &high );
|
|
|
|
cvTsRandUni( ts->get_rng(), arr, low, high );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
double CvArrTest::get_success_error_level( int /*test_case_idx*/, int i, int j )
|
|
|
|
{
|
|
|
|
int elem_depth = CV_MAT_DEPTH(cvGetElemType(test_array[i][j]));
|
|
|
|
assert( i == OUTPUT || i == INPUT_OUTPUT );
|
|
|
|
return elem_depth < CV_32F ? 0 : elem_depth == CV_32F ? FLT_EPSILON*100: DBL_EPSILON*5000;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void CvArrTest::prepare_to_validation( int /*test_case_idx*/ )
|
|
|
|
{
|
|
|
|
assert(0);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int CvArrTest::validate_test_results( int test_case_idx )
|
|
|
|
{
|
|
|
|
static const char* arr_names[] = { "input", "input/output", "output",
|
|
|
|
"ref input/output", "ref output",
|
|
|
|
"temporary", "mask" };
|
|
|
|
int i, j;
|
|
|
|
prepare_to_validation( test_case_idx );
|
|
|
|
|
|
|
|
for( i = 0; i < 2; i++ )
|
|
|
|
{
|
|
|
|
int i0 = i == 0 ? OUTPUT : INPUT_OUTPUT;
|
|
|
|
int i1 = i == 0 ? REF_OUTPUT : REF_INPUT_OUTPUT;
|
|
|
|
int count = test_array[i0].size();
|
|
|
|
|
|
|
|
assert( count == test_array[i1].size() );
|
|
|
|
for( j = 0; j < count; j++ )
|
|
|
|
{
|
|
|
|
double err_level;
|
|
|
|
CvPoint idx = {0,0};
|
|
|
|
double max_diff = 0;
|
|
|
|
int code;
|
|
|
|
char msg[100];
|
|
|
|
|
|
|
|
if( !test_array[i1][j] )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
err_level = get_success_error_level( test_case_idx, i0, j );
|
|
|
|
code = cvTsCmpEps( &test_mat[i0][j], &test_mat[i1][j], &max_diff, err_level, &idx,
|
|
|
|
element_wise_relative_error );
|
|
|
|
|
|
|
|
switch( code )
|
|
|
|
{
|
|
|
|
case -1:
|
|
|
|
sprintf( msg, "Too big difference (=%g)", max_diff );
|
|
|
|
code = CvTS::FAIL_BAD_ACCURACY;
|
|
|
|
break;
|
|
|
|
case -2:
|
|
|
|
strcpy( msg, "Invalid output" );
|
|
|
|
code = CvTS::FAIL_INVALID_OUTPUT;
|
|
|
|
break;
|
|
|
|
case -3:
|
|
|
|
strcpy( msg, "Invalid output in the reference array" );
|
|
|
|
code = CvTS::FAIL_INVALID_OUTPUT;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
ts->printf( CvTS::LOG, "%s in %s array %d at (%d,%d)\n", msg,
|
|
|
|
arr_names[i0], j, idx.x, idx.y );
|
|
|
|
for( i0 = 0; i0 < max_arr; i0++ )
|
|
|
|
{
|
|
|
|
int count = test_array[i0].size();
|
|
|
|
if( i0 == REF_INPUT_OUTPUT || i0 == OUTPUT || i0 == TEMP )
|
|
|
|
continue;
|
|
|
|
for( i1 = 0; i1 < count; i1++ )
|
|
|
|
{
|
|
|
|
CvArr* arr = test_array[i0][i1];
|
|
|
|
if( arr )
|
|
|
|
{
|
|
|
|
CvSize size = cvGetSize(arr);
|
|
|
|
int type = cvGetElemType(arr);
|
|
|
|
ts->printf( CvTS::LOG, "%s array %d type=%sC%d, size=(%d,%d)\n",
|
|
|
|
arr_names[i0], i1, cvTsGetTypeName(type),
|
|
|
|
CV_MAT_CN(type), size.width, size.height );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
ts->set_failed_test_info( code );
|
|
|
|
return code;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* End of file. */
|