Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1046 lines
36 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
#include <ctype.h>
#include <algorithm>
#include <iterator>
#include <opencv2/core/utils/logger.hpp>
namespace cv { namespace ml {
static const float MISSED_VAL = TrainData::missingValue();
static const int VAR_MISSED = VAR_ORDERED;
TrainData::~TrainData() {}
Mat TrainData::getSubVector(const Mat& vec, const Mat& idx)
{
if (!(vec.cols == 1 || vec.rows == 1))
CV_LOG_WARNING(NULL, "'getSubVector(const Mat& vec, const Mat& idx)' call with non-1D input is deprecated. It is not designed to work with 2D matrixes (especially with 'cv::ml::COL_SAMPLE' layout).");
return getSubMatrix(vec, idx, vec.rows == 1 ? cv::ml::COL_SAMPLE : cv::ml::ROW_SAMPLE);
}
template<typename T>
Mat getSubMatrixImpl(const Mat& m, const Mat& idx, int layout)
{
int nidx = idx.checkVector(1, CV_32S);
int dims = m.cols, nsamples = m.rows;
Mat subm;
if (layout == COL_SAMPLE)
{
std::swap(dims, nsamples);
subm.create(dims, nidx, m.type());
}
else
{
subm.create(nidx, dims, m.type());
}
for (int i = 0; i < nidx; i++)
{
int k = idx.at<int>(i); CV_CheckGE(k, 0, "Bad idx"); CV_CheckLT(k, nsamples, "Bad idx or layout");
if (dims == 1)
{
subm.at<T>(i) = m.at<T>(k); // at() has "transparent" access for 1D col-based / row-based vectors.
}
else if (layout == COL_SAMPLE)
{
for (int j = 0; j < dims; j++)
subm.at<T>(j, i) = m.at<T>(j, k);
}
else
{
for (int j = 0; j < dims; j++)
subm.at<T>(i, j) = m.at<T>(k, j);
}
}
return subm;
}
Mat TrainData::getSubMatrix(const Mat& m, const Mat& idx, int layout)
{
if (idx.empty())
return m;
int type = m.type();
CV_CheckType(type, type == CV_32S || type == CV_32F || type == CV_64F, "");
if (type == CV_32S || type == CV_32F) // 32-bit
return getSubMatrixImpl<int>(m, idx, layout);
if (type == CV_64F) // 64-bit
return getSubMatrixImpl<double>(m, idx, layout);
CV_Error(Error::StsInternal, "");
}
class TrainDataImpl CV_FINAL : public TrainData
{
public:
typedef std::map<String, int> MapType;
TrainDataImpl()
{
file = 0;
clear();
}
virtual ~TrainDataImpl() { closeFile(); }
int getLayout() const CV_OVERRIDE { return layout; }
int getNSamples() const CV_OVERRIDE
{
return !sampleIdx.empty() ? (int)sampleIdx.total() :
layout == ROW_SAMPLE ? samples.rows : samples.cols;
}
int getNTrainSamples() const CV_OVERRIDE
{
return !trainSampleIdx.empty() ? (int)trainSampleIdx.total() : getNSamples();
}
int getNTestSamples() const CV_OVERRIDE
{
return !testSampleIdx.empty() ? (int)testSampleIdx.total() : 0;
}
int getNVars() const CV_OVERRIDE
{
return !varIdx.empty() ? (int)varIdx.total() : getNAllVars();
}
int getNAllVars() const CV_OVERRIDE
{
return layout == ROW_SAMPLE ? samples.cols : samples.rows;
}
Mat getTestSamples() const CV_OVERRIDE
{
Mat idx = getTestSampleIdx();
return idx.empty() ? Mat() : getSubMatrix(samples, idx, getLayout());
}
Mat getSamples() const CV_OVERRIDE { return samples; }
Mat getResponses() const CV_OVERRIDE { return responses; }
Mat getMissing() const CV_OVERRIDE { return missing; }
Mat getVarIdx() const CV_OVERRIDE { return varIdx; }
Mat getVarType() const CV_OVERRIDE { return varType; }
int getResponseType() const CV_OVERRIDE
{
return classLabels.empty() ? VAR_ORDERED : VAR_CATEGORICAL;
}
Mat getTrainSampleIdx() const CV_OVERRIDE { return !trainSampleIdx.empty() ? trainSampleIdx : sampleIdx; }
Mat getTestSampleIdx() const CV_OVERRIDE { return testSampleIdx; }
Mat getSampleWeights() const CV_OVERRIDE
{
return sampleWeights;
}
Mat getTrainSampleWeights() const CV_OVERRIDE
{
return getSubVector(sampleWeights, getTrainSampleIdx()); // 1D-vector
}
Mat getTestSampleWeights() const CV_OVERRIDE
{
Mat idx = getTestSampleIdx();
return idx.empty() ? Mat() : getSubVector(sampleWeights, idx); // 1D-vector
}
Mat getTrainResponses() const CV_OVERRIDE
{
return getSubMatrix(responses, getTrainSampleIdx(), cv::ml::ROW_SAMPLE); // col-based responses are transposed in setData()
}
Mat getTrainNormCatResponses() const CV_OVERRIDE
{
return getSubMatrix(normCatResponses, getTrainSampleIdx(), cv::ml::ROW_SAMPLE); // like 'responses'
}
Mat getTestResponses() const CV_OVERRIDE
{
Mat idx = getTestSampleIdx();
return idx.empty() ? Mat() : getSubMatrix(responses, idx, cv::ml::ROW_SAMPLE); // col-based responses are transposed in setData()
}
Mat getTestNormCatResponses() const CV_OVERRIDE
{
Mat idx = getTestSampleIdx();
return idx.empty() ? Mat() : getSubMatrix(normCatResponses, idx, cv::ml::ROW_SAMPLE); // like 'responses'
}
Mat getNormCatResponses() const CV_OVERRIDE { return normCatResponses; }
Mat getClassLabels() const CV_OVERRIDE { return classLabels; }
Mat getClassCounters() const { return classCounters; }
int getCatCount(int vi) const CV_OVERRIDE
{
int n = (int)catOfs.total();
CV_Assert( 0 <= vi && vi < n );
Vec2i ofs = catOfs.at<Vec2i>(vi);
return ofs[1] - ofs[0];
}
Mat getCatOfs() const CV_OVERRIDE { return catOfs; }
Mat getCatMap() const CV_OVERRIDE { return catMap; }
Mat getDefaultSubstValues() const CV_OVERRIDE { return missingSubst; }
void closeFile() { if(file) fclose(file); file=0; }
void clear()
{
closeFile();
samples.release();
missing.release();
varType.release();
varSymbolFlags.release();
responses.release();
sampleIdx.release();
trainSampleIdx.release();
testSampleIdx.release();
normCatResponses.release();
classLabels.release();
classCounters.release();
catMap.release();
catOfs.release();
nameMap = MapType();
layout = ROW_SAMPLE;
}
typedef std::map<int, int> CatMapHash;
void setData(InputArray _samples, int _layout, InputArray _responses,
InputArray _varIdx, InputArray _sampleIdx, InputArray _sampleWeights,
InputArray _varType, InputArray _missing)
{
clear();
CV_Assert(_layout == ROW_SAMPLE || _layout == COL_SAMPLE );
samples = _samples.getMat();
layout = _layout;
responses = _responses.getMat();
varIdx = _varIdx.getMat();
sampleIdx = _sampleIdx.getMat();
sampleWeights = _sampleWeights.getMat();
varType = _varType.getMat();
missing = _missing.getMat();
int nsamples = layout == ROW_SAMPLE ? samples.rows : samples.cols;
int ninputvars = layout == ROW_SAMPLE ? samples.cols : samples.rows;
int i, noutputvars = 0;
CV_Assert( samples.type() == CV_32F || samples.type() == CV_32S );
if( !sampleIdx.empty() )
{
CV_Assert( (sampleIdx.checkVector(1, CV_32S, true) > 0 &&
checkRange(sampleIdx, true, 0, 0, nsamples)) ||
sampleIdx.checkVector(1, CV_8U, true) == nsamples );
if( sampleIdx.type() == CV_8U )
sampleIdx = convertMaskToIdx(sampleIdx);
}
if( !sampleWeights.empty() )
{
CV_Assert( sampleWeights.checkVector(1, CV_32F, true) == nsamples );
}
else
{
sampleWeights = Mat::ones(nsamples, 1, CV_32F);
}
if( !varIdx.empty() )
{
CV_Assert( (varIdx.checkVector(1, CV_32S, true) > 0 &&
checkRange(varIdx, true, 0, 0, ninputvars)) ||
varIdx.checkVector(1, CV_8U, true) == ninputvars );
if( varIdx.type() == CV_8U )
varIdx = convertMaskToIdx(varIdx);
varIdx = varIdx.clone();
std::sort(varIdx.ptr<int>(), varIdx.ptr<int>() + varIdx.total());
}
if( !responses.empty() )
{
CV_Assert( responses.type() == CV_32F || responses.type() == CV_32S );
if( (responses.cols == 1 || responses.rows == 1) && (int)responses.total() == nsamples )
noutputvars = 1;
else
{
CV_Assert( (layout == ROW_SAMPLE && responses.rows == nsamples) ||
(layout == COL_SAMPLE && responses.cols == nsamples) );
noutputvars = layout == ROW_SAMPLE ? responses.cols : responses.rows;
}
if( !responses.isContinuous() || (layout == COL_SAMPLE && noutputvars > 1) )
{
Mat temp;
transpose(responses, temp);
responses = temp;
}
}
int nvars = ninputvars + noutputvars;
if( !varType.empty() )
{
CV_Assert( varType.checkVector(1, CV_8U, true) == nvars &&
checkRange(varType, true, 0, VAR_ORDERED, VAR_CATEGORICAL+1) );
}
else
{
varType.create(1, nvars, CV_8U);
varType = Scalar::all(VAR_ORDERED);
if( noutputvars == 1 )
varType.at<uchar>(ninputvars) = (uchar)(responses.type() < CV_32F ? VAR_CATEGORICAL : VAR_ORDERED);
}
if( noutputvars > 1 )
{
for( i = 0; i < noutputvars; i++ )
CV_Assert( varType.at<uchar>(ninputvars + i) == VAR_ORDERED );
}
13 years ago
catOfs = Mat::zeros(1, nvars, CV_32SC2);
missingSubst = Mat::zeros(1, nvars, CV_32F);
vector<int> labels, counters, sortbuf, tempCatMap;
vector<Vec2i> tempCatOfs;
CatMapHash ofshash;
AutoBuffer<uchar> buf(nsamples);
Mat non_missing(layout == ROW_SAMPLE ? Size(1, nsamples) : Size(nsamples, 1), CV_8U, buf.data());
bool haveMissing = !missing.empty();
if( haveMissing )
{
CV_Assert( missing.size() == samples.size() && missing.type() == CV_8U );
}
// we iterate through all the variables. For each categorical variable we build a map
// in order to convert input values of the variable into normalized values (0..catcount_vi-1)
// often many categorical variables are similar, so we compress the map - try to re-use
// maps for different variables if they are identical
for( i = 0; i < ninputvars; i++ )
{
Mat values_i = layout == ROW_SAMPLE ? samples.col(i) : samples.row(i);
if( varType.at<uchar>(i) == VAR_CATEGORICAL )
{
preprocessCategorical(values_i, 0, labels, 0, sortbuf);
missingSubst.at<float>(i) = -1.f;
int j, m = (int)labels.size();
CV_Assert( m > 0 );
int a = labels.front(), b = labels.back();
const int* currmap = &labels[0];
int hashval = ((unsigned)a*127 + (unsigned)b)*127 + m;
CatMapHash::iterator it = ofshash.find(hashval);
if( it != ofshash.end() )
{
int vi = it->second;
Vec2i ofs0 = tempCatOfs[vi];
int m0 = ofs0[1] - ofs0[0];
const int* map0 = &tempCatMap[ofs0[0]];
if( m0 == m && map0[0] == a && map0[m0-1] == b )
{
for( j = 0; j < m; j++ )
if( map0[j] != currmap[j] )
break;
if( j == m )
{
// re-use the map
tempCatOfs.push_back(ofs0);
continue;
}
}
}
else
ofshash[hashval] = i;
Vec2i ofs;
ofs[0] = (int)tempCatMap.size();
ofs[1] = ofs[0] + m;
tempCatOfs.push_back(ofs);
std::copy(labels.begin(), labels.end(), std::back_inserter(tempCatMap));
}
else
{
tempCatOfs.push_back(Vec2i(0, 0));
/*Mat missing_i = layout == ROW_SAMPLE ? missing.col(i) : missing.row(i);
compare(missing_i, Scalar::all(0), non_missing, CMP_EQ);
missingSubst.at<float>(i) = (float)(mean(values_i, non_missing)[0]);*/
missingSubst.at<float>(i) = 0.f;
}
}
if( !tempCatOfs.empty() )
{
Mat(tempCatOfs).copyTo(catOfs);
Mat(tempCatMap).copyTo(catMap);
}
if( noutputvars > 0 && varType.at<uchar>(ninputvars) == VAR_CATEGORICAL )
{
preprocessCategorical(responses, &normCatResponses, labels, &counters, sortbuf);
Mat(labels).copyTo(classLabels);
Mat(counters).copyTo(classCounters);
}
}
Mat convertMaskToIdx(const Mat& mask)
{
int i, j, nz = countNonZero(mask), n = mask.cols + mask.rows - 1;
Mat idx(1, nz, CV_32S);
for( i = j = 0; i < n; i++ )
if( mask.at<uchar>(i) )
idx.at<int>(j++) = i;
return idx;
}
struct CmpByIdx
{
CmpByIdx(const int* _data, int _step) : data(_data), step(_step) {}
bool operator ()(int i, int j) const { return data[i*step] < data[j*step]; }
const int* data;
int step;
};
void preprocessCategorical(const Mat& data, Mat* normdata, vector<int>& labels,
vector<int>* counters, vector<int>& sortbuf)
{
CV_Assert((data.cols == 1 || data.rows == 1) && (data.type() == CV_32S || data.type() == CV_32F));
int* odata = 0;
int ostep = 0;
if(normdata)
{
normdata->create(data.size(), CV_32S);
odata = normdata->ptr<int>();
ostep = normdata->isContinuous() ? 1 : (int)normdata->step1();
}
int i, n = data.cols + data.rows - 1;
sortbuf.resize(n*2);
int* idx = &sortbuf[0];
int* idata = (int*)data.ptr<int>();
int istep = data.isContinuous() ? 1 : (int)data.step1();
if( data.type() == CV_32F )
{
idata = idx + n;
const float* fdata = data.ptr<float>();
for( i = 0; i < n; i++ )
{
if( fdata[i*istep] == MISSED_VAL )
idata[i] = -1;
else
{
idata[i] = cvRound(fdata[i*istep]);
CV_Assert( (float)idata[i] == fdata[i*istep] );
}
}
istep = 1;
}
for( i = 0; i < n; i++ )
idx[i] = i;
std::sort(idx, idx + n, CmpByIdx(idata, istep));
int clscount = 1;
for( i = 1; i < n; i++ )
clscount += idata[idx[i]*istep] != idata[idx[i-1]*istep];
int clslabel = -1;
int prev = ~idata[idx[0]*istep];
int previdx = 0;
labels.resize(clscount);
if(counters)
counters->resize(clscount);
for( i = 0; i < n; i++ )
{
int l = idata[idx[i]*istep];
if( l != prev )
{
clslabel++;
labels[clslabel] = l;
int k = i - previdx;
if( clslabel > 0 && counters )
counters->at(clslabel-1) = k;
prev = l;
previdx = i;
}
if(odata)
odata[idx[i]*ostep] = clslabel;
}
if(counters)
counters->at(clslabel) = i - previdx;
}
bool loadCSV(const String& filename, int headerLines,
int responseStartIdx, int responseEndIdx,
const String& varTypeSpec, char delimiter, char missch)
{
const int M = 1000000;
const char delimiters[3] = { ' ', delimiter, '\0' };
int nvars = 0;
bool varTypesSet = false;
clear();
file = fopen( filename.c_str(), "rt" );
if( !file )
return false;
std::vector<char> _buf(M);
std::vector<float> allresponses;
std::vector<float> rowvals;
std::vector<uchar> vtypes, rowtypes;
std::vector<uchar> vsymbolflags;
bool haveMissed = false;
char* buf = &_buf[0];
int i, ridx0 = responseStartIdx, ridx1 = responseEndIdx;
int ninputvars = 0, noutputvars = 0;
Mat tempSamples, tempMissing, tempResponses;
MapType tempNameMap;
int catCounter = 1;
// skip header lines
int lineno = 0;
for(;;lineno++)
{
if( !fgets(buf, M, file) )
break;
if(lineno < headerLines )
continue;
// trim trailing spaces
int idx = (int)strlen(buf)-1;
while( idx >= 0 && isspace(buf[idx]) )
buf[idx--] = '\0';
// skip spaces in the beginning
char* ptr = buf;
while( *ptr != '\0' && isspace(*ptr) )
ptr++;
// skip commented off lines
if(*ptr == '#')
continue;
rowvals.clear();
rowtypes.clear();
char* token = strtok(buf, delimiters);
if (!token)
break;
for(;;)
{
float val=0.f; int tp = 0;
decodeElem( token, val, tp, missch, tempNameMap, catCounter );
if( tp == VAR_MISSED )
haveMissed = true;
rowvals.push_back(val);
rowtypes.push_back((uchar)tp);
token = strtok(NULL, delimiters);
if (!token)
break;
}
if( nvars == 0 )
{
if( rowvals.empty() )
CV_Error(CV_StsBadArg, "invalid CSV format; no data found");
nvars = (int)rowvals.size();
if( !varTypeSpec.empty() && varTypeSpec.size() > 0 )
{
setVarTypes(varTypeSpec, nvars, vtypes);
varTypesSet = true;
}
else
vtypes = rowtypes;
vsymbolflags.resize(nvars);
for( i = 0; i < nvars; i++ )
vsymbolflags[i] = (uchar)(rowtypes[i] == VAR_CATEGORICAL);
ridx0 = ridx0 >= 0 ? ridx0 : ridx0 == -1 ? nvars - 1 : -1;
ridx1 = ridx1 >= 0 ? ridx1 : ridx0 >= 0 ? ridx0+1 : -1;
CV_Assert(ridx1 > ridx0);
noutputvars = ridx0 >= 0 ? ridx1 - ridx0 : 0;
ninputvars = nvars - noutputvars;
}
else
CV_Assert( nvars == (int)rowvals.size() );
// check var types
for( i = 0; i < nvars; i++ )
{
CV_Assert( (!varTypesSet && vtypes[i] == rowtypes[i]) ||
(varTypesSet && (vtypes[i] == rowtypes[i] || rowtypes[i] == VAR_ORDERED)) );
uchar sflag = (uchar)(rowtypes[i] == VAR_CATEGORICAL);
if( vsymbolflags[i] == VAR_MISSED )
vsymbolflags[i] = sflag;
else
CV_Assert(vsymbolflags[i] == sflag || rowtypes[i] == VAR_MISSED);
}
if( ridx0 >= 0 )
{
for( i = ridx1; i < nvars; i++ )
std::swap(rowvals[i], rowvals[i-noutputvars]);
for( i = ninputvars; i < nvars; i++ )
allresponses.push_back(rowvals[i]);
rowvals.pop_back();
}
Mat rmat(1, ninputvars, CV_32F, &rowvals[0]);
tempSamples.push_back(rmat);
}
closeFile();
int nsamples = tempSamples.rows;
if( nsamples == 0 )
return false;
if( haveMissed )
compare(tempSamples, MISSED_VAL, tempMissing, CMP_EQ);
if( ridx0 >= 0 )
{
for( i = ridx1; i < nvars; i++ )
std::swap(vtypes[i], vtypes[i-noutputvars]);
if( noutputvars > 1 )
{
for( i = ninputvars; i < nvars; i++ )
if( vtypes[i] == VAR_CATEGORICAL )
CV_Error(CV_StsBadArg,
"If responses are vector values, not scalars, they must be marked as ordered responses");
}
}
if( !varTypesSet && noutputvars == 1 && vtypes[ninputvars] == VAR_ORDERED )
{
for( i = 0; i < nsamples; i++ )
if( allresponses[i] != cvRound(allresponses[i]) )
break;
if( i == nsamples )
vtypes[ninputvars] = VAR_CATEGORICAL;
}
//If there are responses in the csv file, save them. If not, responses matrix will contain just zeros
9 years ago
if (noutputvars != 0){
9 years ago
Mat(nsamples, noutputvars, CV_32F, &allresponses[0]).copyTo(tempResponses);
setData(tempSamples, ROW_SAMPLE, tempResponses, noArray(), noArray(),
noArray(), Mat(vtypes).clone(), tempMissing);
}
else{
Mat zero_mat(nsamples, 1, CV_32F, Scalar(0));
zero_mat.copyTo(tempResponses);
setData(tempSamples, ROW_SAMPLE, tempResponses, noArray(), noArray(),
noArray(), noArray(), tempMissing);
}
bool ok = !samples.empty();
if(ok)
{
std::swap(tempNameMap, nameMap);
Mat(vsymbolflags).copyTo(varSymbolFlags);
}
return ok;
}
void decodeElem( const char* token, float& elem, int& type,
char missch, MapType& namemap, int& counter ) const
{
char* stopstring = NULL;
elem = (float)strtod( token, &stopstring );
if( *stopstring == missch && strlen(stopstring) == 1 ) // missed value
{
elem = MISSED_VAL;
type = VAR_MISSED;
}
else if( *stopstring != '\0' )
{
MapType::iterator it = namemap.find(token);
if( it == namemap.end() )
{
elem = (float)counter;
namemap[token] = counter++;
}
else
elem = (float)it->second;
type = VAR_CATEGORICAL;
}
else
type = VAR_ORDERED;
}
void setVarTypes( const String& s, int nvars, std::vector<uchar>& vtypes ) const
{
const char* errmsg = "type spec is not correct; it should have format \"cat\", \"ord\" or "
"\"ord[n1,n2-n3,n4-n5,...]cat[m1-m2,m3,m4-m5,...]\", where n's and m's are 0-based variable indices";
const char* str = s.c_str();
int specCounter = 0;
vtypes.resize(nvars);
for( int k = 0; k < 2; k++ )
{
const char* ptr = strstr(str, k == 0 ? "ord" : "cat");
int tp = k == 0 ? VAR_ORDERED : VAR_CATEGORICAL;
if( ptr ) // parse ord/cat str
{
char* stopstring = NULL;
if( ptr[3] == '\0' )
{
for( int i = 0; i < nvars; i++ )
vtypes[i] = (uchar)tp;
specCounter = nvars;
break;
}
if ( ptr[3] != '[')
CV_Error( CV_StsBadArg, errmsg );
ptr += 4; // pass "ord["
do
{
int b1 = (int)strtod( ptr, &stopstring );
if( *stopstring == 0 || (*stopstring != ',' && *stopstring != ']' && *stopstring != '-') )
CV_Error( CV_StsBadArg, errmsg );
ptr = stopstring + 1;
if( (stopstring[0] == ',') || (stopstring[0] == ']'))
{
CV_Assert( 0 <= b1 && b1 < nvars );
vtypes[b1] = (uchar)tp;
specCounter++;
}
else
{
if( stopstring[0] == '-')
{
int b2 = (int)strtod( ptr, &stopstring);
if ( (*stopstring == 0) || (*stopstring != ',' && *stopstring != ']') )
CV_Error( CV_StsBadArg, errmsg );
ptr = stopstring + 1;
CV_Assert( 0 <= b1 && b1 <= b2 && b2 < nvars );
for (int i = b1; i <= b2; i++)
vtypes[i] = (uchar)tp;
specCounter += b2 - b1 + 1;
}
else
CV_Error( CV_StsBadArg, errmsg );
}
}
while(*stopstring != ']');
}
}
if( specCounter != nvars )
CV_Error( CV_StsBadArg, "type of some variables is not specified" );
}
void setTrainTestSplitRatio(double ratio, bool shuffle) CV_OVERRIDE
{
CV_Assert( 0. <= ratio && ratio <= 1. );
setTrainTestSplit(cvRound(getNSamples()*ratio), shuffle);
}
void setTrainTestSplit(int count, bool shuffle) CV_OVERRIDE
{
int i, nsamples = getNSamples();
CV_Assert( 0 <= count && count < nsamples );
trainSampleIdx.release();
testSampleIdx.release();
if( count == 0 )
trainSampleIdx = sampleIdx;
else if( count == nsamples )
testSampleIdx = sampleIdx;
else
{
Mat mask(1, nsamples, CV_8U);
uchar* mptr = mask.ptr();
for( i = 0; i < nsamples; i++ )
mptr[i] = (uchar)(i < count);
trainSampleIdx.create(1, count, CV_32S);
testSampleIdx.create(1, nsamples - count, CV_32S);
int j0 = 0, j1 = 0;
const int* sptr = !sampleIdx.empty() ? sampleIdx.ptr<int>() : 0;
int* trainptr = trainSampleIdx.ptr<int>();
int* testptr = testSampleIdx.ptr<int>();
for( i = 0; i < nsamples; i++ )
{
int idx = sptr ? sptr[i] : i;
if( mptr[i] )
trainptr[j0++] = idx;
else
testptr[j1++] = idx;
}
if( shuffle )
shuffleTrainTest();
}
}
void shuffleTrainTest() CV_OVERRIDE
{
if( !trainSampleIdx.empty() && !testSampleIdx.empty() )
{
int i, nsamples = getNSamples(), ntrain = getNTrainSamples(), ntest = getNTestSamples();
int* trainIdx = trainSampleIdx.ptr<int>();
int* testIdx = testSampleIdx.ptr<int>();
RNG& rng = theRNG();
for( i = 0; i < nsamples; i++)
{
int a = rng.uniform(0, nsamples);
int b = rng.uniform(0, nsamples);
int* ptra = trainIdx;
int* ptrb = trainIdx;
if( a >= ntrain )
{
ptra = testIdx;
a -= ntrain;
CV_Assert( a < ntest );
}
if( b >= ntrain )
{
ptrb = testIdx;
b -= ntrain;
CV_Assert( b < ntest );
}
std::swap(ptra[a], ptrb[b]);
}
}
}
Mat getTrainSamples(int _layout,
bool compressSamples,
bool compressVars) const CV_OVERRIDE
{
if( samples.empty() )
return samples;
if( (!compressSamples || (trainSampleIdx.empty() && sampleIdx.empty())) &&
(!compressVars || varIdx.empty()) &&
layout == _layout )
return samples;
int drows = getNTrainSamples(), dcols = getNVars();
Mat sidx = getTrainSampleIdx(), vidx = getVarIdx();
const float* src0 = samples.ptr<float>();
const int* sptr = !sidx.empty() ? sidx.ptr<int>() : 0;
const int* vptr = !vidx.empty() ? vidx.ptr<int>() : 0;
size_t sstep0 = samples.step/samples.elemSize();
size_t sstep = layout == ROW_SAMPLE ? sstep0 : 1;
size_t vstep = layout == ROW_SAMPLE ? 1 : sstep0;
if( _layout == COL_SAMPLE )
{
std::swap(drows, dcols);
std::swap(sptr, vptr);
std::swap(sstep, vstep);
}
Mat dsamples(drows, dcols, CV_32F);
for( int i = 0; i < drows; i++ )
{
const float* src = src0 + (sptr ? sptr[i] : i)*sstep;
float* dst = dsamples.ptr<float>(i);
for( int j = 0; j < dcols; j++ )
dst[j] = src[(vptr ? vptr[j] : j)*vstep];
}
return dsamples;
}
void getValues( int vi, InputArray _sidx, float* values ) const CV_OVERRIDE
{
Mat sidx = _sidx.getMat();
int i, n = sidx.checkVector(1, CV_32S), nsamples = getNSamples();
CV_Assert( 0 <= vi && vi < getNAllVars() );
CV_Assert( n >= 0 );
const int* s = n > 0 ? sidx.ptr<int>() : 0;
if( n == 0 )
n = nsamples;
size_t step = samples.step/samples.elemSize();
size_t sstep = layout == ROW_SAMPLE ? step : 1;
size_t vstep = layout == ROW_SAMPLE ? 1 : step;
const float* src = samples.ptr<float>() + vi*vstep;
float subst = missingSubst.at<float>(vi);
for( i = 0; i < n; i++ )
{
int j = i;
if( s )
{
j = s[i];
CV_Assert( 0 <= j && j < nsamples );
}
values[i] = src[j*sstep];
if( values[i] == MISSED_VAL )
values[i] = subst;
}
}
void getNormCatValues( int vi, InputArray _sidx, int* values ) const CV_OVERRIDE
{
float* fvalues = (float*)values;
getValues(vi, _sidx, fvalues);
int i, n = (int)_sidx.total();
Vec2i ofs = catOfs.at<Vec2i>(vi);
int m = ofs[1] - ofs[0];
CV_Assert( m > 0 ); // if m==0, vi is an ordered variable
const int* cmap = &catMap.at<int>(ofs[0]);
bool fastMap = (m == cmap[m - 1] - cmap[0] + 1);
if( fastMap )
{
for( i = 0; i < n; i++ )
{
int val = cvRound(fvalues[i]);
int idx = val - cmap[0];
CV_Assert(cmap[idx] == val);
values[i] = idx;
}
}
else
{
for( i = 0; i < n; i++ )
{
int val = cvRound(fvalues[i]);
int a = 0, b = m, c = -1;
while( a < b )
{
c = (a + b) >> 1;
if( val < cmap[c] )
b = c;
else if( val > cmap[c] )
a = c+1;
else
break;
}
CV_DbgAssert( c >= 0 && val == cmap[c] );
values[i] = c;
}
}
}
void getSample(InputArray _vidx, int sidx, float* buf) const CV_OVERRIDE
{
CV_Assert(buf != 0 && 0 <= sidx && sidx < getNSamples());
Mat vidx = _vidx.getMat();
int i, n = vidx.checkVector(1, CV_32S), nvars = getNAllVars();
CV_Assert( n >= 0 );
const int* vptr = n > 0 ? vidx.ptr<int>() : 0;
if( n == 0 )
n = nvars;
size_t step = samples.step/samples.elemSize();
size_t sstep = layout == ROW_SAMPLE ? step : 1;
size_t vstep = layout == ROW_SAMPLE ? 1 : step;
const float* src = samples.ptr<float>() + sidx*sstep;
for( i = 0; i < n; i++ )
{
int j = i;
if( vptr )
{
j = vptr[i];
CV_Assert( 0 <= j && j < nvars );
}
buf[i] = src[j*vstep];
}
}
void getNames(std::vector<String>& names) const CV_OVERRIDE
{
size_t n = nameMap.size();
TrainDataImpl::MapType::const_iterator it = nameMap.begin(),
it_end = nameMap.end();
names.resize(n+1);
names[0] = "?";
for( ; it != it_end; ++it )
{
String s = it->first;
int label = it->second;
CV_Assert( label > 0 && label <= (int)n );
names[label] = s;
}
}
Mat getVarSymbolFlags() const CV_OVERRIDE
{
return varSymbolFlags;
}
FILE* file;
int layout;
Mat samples, missing, varType, varIdx, varSymbolFlags, responses, missingSubst;
Mat sampleIdx, trainSampleIdx, testSampleIdx;
Mat sampleWeights, catMap, catOfs;
Mat normCatResponses, classLabels, classCounters;
MapType nameMap;
};
Ptr<TrainData> TrainData::loadFromCSV(const String& filename,
int headerLines,
int responseStartIdx,
int responseEndIdx,
const String& varTypeSpec,
char delimiter, char missch)
{
CV_TRACE_FUNCTION_SKIP_NESTED();
Ptr<TrainDataImpl> td = makePtr<TrainDataImpl>();
if(!td->loadCSV(filename, headerLines, responseStartIdx, responseEndIdx, varTypeSpec, delimiter, missch))
td.release();
return td;
}
Ptr<TrainData> TrainData::create(InputArray samples, int layout, InputArray responses,
InputArray varIdx, InputArray sampleIdx, InputArray sampleWeights,
InputArray varType)
{
CV_TRACE_FUNCTION_SKIP_NESTED();
Ptr<TrainDataImpl> td = makePtr<TrainDataImpl>();
td->setData(samples, layout, responses, varIdx, sampleIdx, sampleWeights, varType, noArray());
return td;
}
}}
/* End of file. */