|
|
|
#include "opencv2/core/utility.hpp"
|
|
|
|
#include "opencv2/highgui.hpp"
|
|
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
#include "opencv2/features2d.hpp"
|
|
|
|
#include "opencv2/objdetect.hpp"
|
|
|
|
#include "opencv2/legacy.hpp"
|
|
|
|
|
|
|
|
#include <algorithm>
|
|
|
|
#include <iostream>
|
|
|
|
#include <vector>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
using namespace std;
|
|
|
|
using namespace cv;
|
|
|
|
|
|
|
|
static void help()
|
|
|
|
{
|
|
|
|
printf( "This program shows the use of the \"fern\" plannar PlanarObjectDetector point\n"
|
|
|
|
"descriptor classifier\n"
|
|
|
|
"Usage:\n"
|
|
|
|
"./find_obj_ferns <object_filename> <scene_filename>, default: box.png and box_in_scene.png\n\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
int main(int argc, char** argv)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
const char* object_filename = argc > 1 ? argv[1] : "box.png";
|
|
|
|
const char* scene_filename = argc > 2 ? argv[2] : "box_in_scene.png";
|
|
|
|
|
|
|
|
help();
|
|
|
|
|
|
|
|
Mat object = imread( object_filename, IMREAD_GRAYSCALE );
|
|
|
|
Mat scene = imread( scene_filename, IMREAD_GRAYSCALE );
|
|
|
|
|
|
|
|
if( !object.data || !scene.data )
|
|
|
|
{
|
|
|
|
fprintf( stderr, "Can not load %s and/or %s\n",
|
|
|
|
object_filename, scene_filename );
|
|
|
|
exit(-1);
|
|
|
|
}
|
|
|
|
|
|
|
|
double imgscale = 1;
|
|
|
|
Mat image;
|
|
|
|
|
|
|
|
resize(scene, image, Size(), 1./imgscale, 1./imgscale, INTER_CUBIC);
|
|
|
|
|
|
|
|
namedWindow("Object", 1);
|
|
|
|
namedWindow("Image", 1);
|
|
|
|
namedWindow("Object Correspondence", 1);
|
|
|
|
|
|
|
|
Size patchSize(32, 32);
|
|
|
|
LDetector ldetector(7, 20, 2, 2000, patchSize.width, 2);
|
|
|
|
ldetector.setVerbose(true);
|
|
|
|
PlanarObjectDetector detector;
|
|
|
|
|
|
|
|
vector<Mat> objpyr, imgpyr;
|
|
|
|
int blurKSize = 3;
|
|
|
|
double sigma = 0;
|
|
|
|
GaussianBlur(object, object, Size(blurKSize, blurKSize), sigma, sigma);
|
|
|
|
GaussianBlur(image, image, Size(blurKSize, blurKSize), sigma, sigma);
|
|
|
|
buildPyramid(object, objpyr, ldetector.nOctaves-1);
|
|
|
|
buildPyramid(image, imgpyr, ldetector.nOctaves-1);
|
|
|
|
|
|
|
|
vector<KeyPoint> objKeypoints, imgKeypoints;
|
|
|
|
PatchGenerator gen(0,256,5,true,0.8,1.2,-CV_PI/2,CV_PI/2,-CV_PI/2,CV_PI/2);
|
|
|
|
|
|
|
|
string model_filename = format("%s_model.xml.gz", object_filename);
|
|
|
|
printf("Trying to load %s ...\n", model_filename.c_str());
|
|
|
|
FileStorage fs(model_filename, FileStorage::READ);
|
|
|
|
if( fs.isOpened() )
|
|
|
|
{
|
|
|
|
detector.read(fs.getFirstTopLevelNode());
|
|
|
|
printf("Successfully loaded %s.\n", model_filename.c_str());
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
printf("The file not found and can not be read. Let's train the model.\n");
|
|
|
|
printf("Step 1. Finding the robust keypoints ...\n");
|
|
|
|
ldetector.setVerbose(true);
|
|
|
|
ldetector.getMostStable2D(object, objKeypoints, 100, gen);
|
|
|
|
printf("Done.\nStep 2. Training ferns-based planar object detector ...\n");
|
|
|
|
detector.setVerbose(true);
|
|
|
|
|
|
|
|
detector.train(objpyr, objKeypoints, patchSize.width, 100, 11, 10000, ldetector, gen);
|
|
|
|
printf("Done.\nStep 3. Saving the model to %s ...\n", model_filename.c_str());
|
|
|
|
if( fs.open(model_filename, FileStorage::WRITE) )
|
|
|
|
detector.write(fs, "ferns_model");
|
|
|
|
}
|
|
|
|
printf("Now find the keypoints in the image, try recognize them and compute the homography matrix\n");
|
|
|
|
fs.release();
|
|
|
|
|
|
|
|
vector<Point2f> dst_corners;
|
|
|
|
Mat correspond( object.rows + image.rows, std::max(object.cols, image.cols), CV_8UC3);
|
|
|
|
correspond = Scalar(0.);
|
|
|
|
Mat part(correspond, Rect(0, 0, object.cols, object.rows));
|
|
|
|
cvtColor(object, part, CV_GRAY2BGR);
|
|
|
|
part = Mat(correspond, Rect(0, object.rows, image.cols, image.rows));
|
|
|
|
cvtColor(image, part, CV_GRAY2BGR);
|
|
|
|
|
|
|
|
vector<int> pairs;
|
|
|
|
Mat H;
|
|
|
|
|
|
|
|
double t = (double)getTickCount();
|
|
|
|
objKeypoints = detector.getModelPoints();
|
|
|
|
ldetector(imgpyr, imgKeypoints, 300);
|
|
|
|
|
|
|
|
std::cout << "Object keypoints: " << objKeypoints.size() << "\n";
|
|
|
|
std::cout << "Image keypoints: " << imgKeypoints.size() << "\n";
|
|
|
|
bool found = detector(imgpyr, imgKeypoints, H, dst_corners, &pairs);
|
|
|
|
t = (double)getTickCount() - t;
|
|
|
|
printf("%gms\n", t*1000/getTickFrequency());
|
|
|
|
|
|
|
|
if( found )
|
|
|
|
{
|
|
|
|
for( i = 0; i < 4; i++ )
|
|
|
|
{
|
|
|
|
Point r1 = dst_corners[i%4];
|
|
|
|
Point r2 = dst_corners[(i+1)%4];
|
|
|
|
line( correspond, Point(r1.x, r1.y+object.rows),
|
|
|
|
Point(r2.x, r2.y+object.rows), Scalar(0,0,255) );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for( i = 0; i < (int)pairs.size(); i += 2 )
|
|
|
|
{
|
|
|
|
line( correspond, objKeypoints[pairs[i]].pt,
|
|
|
|
imgKeypoints[pairs[i+1]].pt + Point2f(0,(float)object.rows),
|
|
|
|
Scalar(0,255,0) );
|
|
|
|
}
|
|
|
|
|
|
|
|
imshow( "Object Correspondence", correspond );
|
|
|
|
Mat objectColor;
|
|
|
|
cvtColor(object, objectColor, CV_GRAY2BGR);
|
|
|
|
for( i = 0; i < (int)objKeypoints.size(); i++ )
|
|
|
|
{
|
|
|
|
circle( objectColor, objKeypoints[i].pt, 2, Scalar(0,0,255), -1 );
|
|
|
|
circle( objectColor, objKeypoints[i].pt, (1 << objKeypoints[i].octave)*15, Scalar(0,255,0), 1 );
|
|
|
|
}
|
|
|
|
Mat imageColor;
|
|
|
|
cvtColor(image, imageColor, CV_GRAY2BGR);
|
|
|
|
for( i = 0; i < (int)imgKeypoints.size(); i++ )
|
|
|
|
{
|
|
|
|
circle( imageColor, imgKeypoints[i].pt, 2, Scalar(0,0,255), -1 );
|
|
|
|
circle( imageColor, imgKeypoints[i].pt, (1 << imgKeypoints[i].octave)*15, Scalar(0,255,0), 1 );
|
|
|
|
}
|
|
|
|
|
|
|
|
imwrite("correspond.png", correspond );
|
|
|
|
imshow( "Object", objectColor );
|
|
|
|
imshow( "Image", imageColor );
|
|
|
|
|
|
|
|
waitKey(0);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|