Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

519 lines
17 KiB

// DaSiamRPN tracker.
// Original paper: https://arxiv.org/abs/1808.06048
// Link to original repo: https://github.com/foolwood/DaSiamRPN
// Links to onnx models:
// - network: https://www.dropbox.com/s/rr1lk9355vzolqv/dasiamrpn_model.onnx?dl=0
// - kernel_r1: https://www.dropbox.com/s/999cqx5zrfi7w4p/dasiamrpn_kernel_r1.onnx?dl=0
// - kernel_cls1: https://www.dropbox.com/s/qvmtszx5h339a0w/dasiamrpn_kernel_cls1.onnx?dl=0
#include <iostream>
#include <cmath>
#include <opencv2/dnn.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
using namespace cv;
using namespace cv::dnn;
const char *keys =
"{ help h | | Print help message }"
"{ input i | | Full path to input video folder, the specific camera index. (empty for camera 0) }"
"{ net | dasiamrpn_model.onnx | Path to onnx model of net}"
"{ kernel_cls1 | dasiamrpn_kernel_cls1.onnx | Path to onnx model of kernel_r1 }"
"{ kernel_r1 | dasiamrpn_kernel_r1.onnx | Path to onnx model of kernel_cls1 }"
"{ backend | 0 | Choose one of computation backends: "
"0: automatically (by default), "
"1: Halide language (http://halide-lang.org/), "
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"3: OpenCV implementation }"
"{ target | 0 | Choose one of target computation devices: "
"0: CPU target (by default), "
"1: OpenCL, "
"2: OpenCL fp16 (half-float precision), "
"3: VPU }"
;
// Initial parameters of the model
struct trackerConfig
{
float windowInfluence = 0.43f;
float lr = 0.4f;
int scale = 8;
bool swapRB = false;
int totalStride = 8;
float penaltyK = 0.055f;
int exemplarSize = 127;
int instanceSize = 271;
float contextAmount = 0.5f;
std::vector<float> ratios = { 0.33f, 0.5f, 1.0f, 2.0f, 3.0f };
int anchorNum = int(ratios.size());
Mat anchors;
Mat windows;
Scalar avgChans;
Size imgSize = { 0, 0 };
Rect2f targetBox = { 0, 0, 0, 0 };
int scoreSize = (instanceSize - exemplarSize) / totalStride + 1;
void update_scoreSize()
{
scoreSize = int((instanceSize - exemplarSize) / totalStride + 1);
}
};
static void softmax(const Mat& src, Mat& dst);
static void elementMax(Mat& src);
static Mat generateHanningWindow(const trackerConfig& trackState);
static Mat generateAnchors(trackerConfig& trackState);
static Mat getSubwindow(Mat& img, const Rect2f& targetBox, float originalSize, Scalar avgChans);
static float trackerEval(Mat img, trackerConfig& trackState, Net& siamRPN);
static void trackerInit(Mat img, trackerConfig& trackState, Net& siamRPN, Net& siamKernelR1, Net& siamKernelCL1);
template <typename T> static
T sizeCal(const T& w, const T& h)
{
T pad = (w + h) * T(0.5);
T sz2 = (w + pad) * (h + pad);
return sqrt(sz2);
}
template <>
Mat sizeCal(const Mat& w, const Mat& h)
{
Mat pad = (w + h) * 0.5;
Mat sz2 = (w + pad).mul((h + pad));
cv::sqrt(sz2, sz2);
return sz2;
}
static
int run(int argc, char** argv)
{
// Parse command line arguments.
CommandLineParser parser(argc, argv, keys);
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
std::string inputName = parser.get<String>("input");
std::string net = parser.get<String>("net");
std::string kernel_cls1 = parser.get<String>("kernel_cls1");
std::string kernel_r1 = parser.get<String>("kernel_r1");
int backend = parser.get<int>("backend");
int target = parser.get<int>("target");
// Read nets.
Net siamRPN, siamKernelCL1, siamKernelR1;
try
{
siamRPN = readNet(samples::findFile(net));
siamKernelCL1 = readNet(samples::findFile(kernel_cls1));
siamKernelR1 = readNet(samples::findFile(kernel_r1));
}
catch (const cv::Exception& ee)
{
std::cerr << "Exception: " << ee.what() << std::endl;
std::cout << "Can't load the network by using the following files:" << std::endl;
std::cout << "siamRPN : " << net << std::endl;
std::cout << "siamKernelCL1 : " << kernel_cls1 << std::endl;
std::cout << "siamKernelR1 : " << kernel_r1 << std::endl;
return 2;
}
// Set model backend.
siamRPN.setPreferableBackend(backend);
siamRPN.setPreferableTarget(target);
siamKernelR1.setPreferableBackend(backend);
siamKernelR1.setPreferableTarget(target);
siamKernelCL1.setPreferableBackend(backend);
siamKernelCL1.setPreferableTarget(target);
const std::string winName = "DaSiamRPN";
namedWindow(winName, WINDOW_AUTOSIZE);
// Open a video file or an image file or a camera stream.
VideoCapture cap;
if (inputName.empty() || (isdigit(inputName[0]) && inputName.size() == 1))
{
int c = inputName.empty() ? 0 : inputName[0] - '0';
std::cout << "Trying to open camera #" << c << " ..." << std::endl;
if (!cap.open(c))
{
std::cout << "Capture from camera #" << c << " didn't work. Specify -i=<video> parameter to read from video file" << std::endl;
return 2;
}
}
else if (inputName.size())
{
inputName = samples::findFileOrKeep(inputName);
if (!cap.open(inputName))
{
std::cout << "Could not open: " << inputName << std::endl;
return 2;
}
}
// Read the first image.
Mat image;
cap >> image;
if (image.empty())
{
std::cerr << "Can't capture frame!" << std::endl;
return 2;
}
Mat image_select = image.clone();
putText(image_select, "Select initial bounding box you want to track.", Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
putText(image_select, "And Press the ENTER key.", Point(0, 35), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
Rect selectRect = selectROI(winName, image_select);
std::cout << "ROI=" << selectRect << std::endl;
trackerConfig trackState;
trackState.update_scoreSize();
trackState.targetBox = Rect2f(
float(selectRect.x) + float(selectRect.width) * 0.5f, // FIXIT don't use center in Rect structures, it is confusing
float(selectRect.y) + float(selectRect.height) * 0.5f,
float(selectRect.width),
float(selectRect.height)
);
// Set tracking template.
trackerInit(image, trackState, siamRPN, siamKernelR1, siamKernelCL1);
TickMeter tickMeter;
for (int count = 0; ; ++count)
{
cap >> image;
if (image.empty())
{
std::cerr << "Can't capture frame " << count << ". End of video stream?" << std::endl;
break;
}
tickMeter.start();
float score = trackerEval(image, trackState, siamRPN);
tickMeter.stop();
Rect rect = {
int(trackState.targetBox.x - int(trackState.targetBox.width / 2)),
int(trackState.targetBox.y - int(trackState.targetBox.height / 2)),
int(trackState.targetBox.width),
int(trackState.targetBox.height)
};
std::cout << "frame " << count <<
": predicted score=" << score <<
" rect=" << rect <<
" time=" << tickMeter.getTimeMilli() << "ms" <<
std::endl;
Mat render_image = image.clone();
rectangle(render_image, rect, Scalar(0, 255, 0), 2);
std::string timeLabel = format("Inference time: %.2f ms", tickMeter.getTimeMilli());
std::string scoreLabel = format("Score: %f", score);
putText(render_image, timeLabel, Point(0, 15), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
putText(render_image, scoreLabel, Point(0, 35), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
imshow(winName, render_image);
tickMeter.reset();
int c = waitKey(1);
if (c == 27 /*ESC*/)
break;
}
std::cout << "Exit" << std::endl;
return 0;
}
Mat generateHanningWindow(const trackerConfig& trackState)
{
Mat baseWindows, HanningWindows;
createHanningWindow(baseWindows, Size(trackState.scoreSize, trackState.scoreSize), CV_32F);
baseWindows = baseWindows.reshape(0, { 1, trackState.scoreSize, trackState.scoreSize });
HanningWindows = baseWindows.clone();
for (int i = 1; i < trackState.anchorNum; i++)
{
HanningWindows.push_back(baseWindows);
}
return HanningWindows;
}
Mat generateAnchors(trackerConfig& trackState)
{
int totalStride = trackState.totalStride, scales = trackState.scale, scoreSize = trackState.scoreSize;
std::vector<float> ratios = trackState.ratios;
std::vector<Rect2f> baseAnchors;
int anchorNum = int(ratios.size());
int size = totalStride * totalStride;
float ori = -(float(scoreSize / 2)) * float(totalStride);
for (auto i = 0; i < anchorNum; i++)
{
int ws = int(sqrt(size / ratios[i]));
int hs = int(ws * ratios[i]);
float wws = float(ws) * scales;
float hhs = float(hs) * scales;
Rect2f anchor = { 0, 0, wws, hhs };
baseAnchors.push_back(anchor);
}
int anchorIndex[] = { 0, 0, 0, 0 };
const int sizes[] = { 4, (int)ratios.size(), scoreSize, scoreSize };
Mat anchors(4, sizes, CV_32F);
for (auto i = 0; i < scoreSize; i++)
{
for (auto j = 0; j < scoreSize; j++)
{
for (auto k = 0; k < anchorNum; k++)
{
anchorIndex[0] = 1, anchorIndex[1] = k, anchorIndex[2] = i, anchorIndex[3] = j;
anchors.at<float>(anchorIndex) = ori + totalStride * i;
anchorIndex[0] = 0;
anchors.at<float>(anchorIndex) = ori + totalStride * j;
anchorIndex[0] = 2;
anchors.at<float>(anchorIndex) = baseAnchors[k].width;
anchorIndex[0] = 3;
anchors.at<float>(anchorIndex) = baseAnchors[k].height;
}
}
}
return anchors;
}
Mat getSubwindow(Mat& img, const Rect2f& targetBox, float originalSize, Scalar avgChans)
{
Mat zCrop, dst;
Size imgSize = img.size();
float c = (originalSize + 1) / 2;
float xMin = (float)cvRound(targetBox.x - c);
float xMax = xMin + originalSize - 1;
float yMin = (float)cvRound(targetBox.y - c);
float yMax = yMin + originalSize - 1;
int leftPad = (int)(fmax(0., -xMin));
int topPad = (int)(fmax(0., -yMin));
int rightPad = (int)(fmax(0., xMax - imgSize.width + 1));
int bottomPad = (int)(fmax(0., yMax - imgSize.height + 1));
xMin = xMin + leftPad;
xMax = xMax + leftPad;
yMax = yMax + topPad;
yMin = yMin + topPad;
if (topPad == 0 && bottomPad == 0 && leftPad == 0 && rightPad == 0)
{
img(Rect(int(xMin), int(yMin), int(xMax - xMin + 1), int(yMax - yMin + 1))).copyTo(zCrop);
}
else
{
copyMakeBorder(img, dst, topPad, bottomPad, leftPad, rightPad, BORDER_CONSTANT, avgChans);
dst(Rect(int(xMin), int(yMin), int(xMax - xMin + 1), int(yMax - yMin + 1))).copyTo(zCrop);
}
return zCrop;
}
void softmax(const Mat& src, Mat& dst)
{
Mat maxVal;
cv::max(src.row(1), src.row(0), maxVal);
src.row(1) -= maxVal;
src.row(0) -= maxVal;
exp(src, dst);
Mat sumVal = dst.row(0) + dst.row(1);
dst.row(0) = dst.row(0) / sumVal;
dst.row(1) = dst.row(1) / sumVal;
}
void elementMax(Mat& src)
{
int* p = src.size.p;
int index[] = { 0, 0, 0, 0 };
for (int n = 0; n < *p; n++)
{
for (int k = 0; k < *(p + 1); k++)
{
for (int i = 0; i < *(p + 2); i++)
{
for (int j = 0; j < *(p + 3); j++)
{
index[0] = n, index[1] = k, index[2] = i, index[3] = j;
float& v = src.at<float>(index);
v = fmax(v, 1.0f / v);
}
}
}
}
}
float trackerEval(Mat img, trackerConfig& trackState, Net& siamRPN)
{
Rect2f targetBox = trackState.targetBox;
float wc = targetBox.height + trackState.contextAmount * (targetBox.width + targetBox.height);
float hc = targetBox.width + trackState.contextAmount * (targetBox.width + targetBox.height);
float sz = sqrt(wc * hc);
float scaleZ = trackState.exemplarSize / sz;
float searchSize = float((trackState.instanceSize - trackState.exemplarSize) / 2);
float pad = searchSize / scaleZ;
float sx = sz + 2 * pad;
Mat xCrop = getSubwindow(img, targetBox, (float)cvRound(sx), trackState.avgChans);
static Mat blob;
std::vector<Mat> outs;
std::vector<String> outNames;
Mat delta, score;
Mat sc, rc, penalty, pscore;
blobFromImage(xCrop, blob, 1.0, Size(trackState.instanceSize, trackState.instanceSize), Scalar(), trackState.swapRB, false, CV_32F);
siamRPN.setInput(blob);
outNames = siamRPN.getUnconnectedOutLayersNames();
siamRPN.forward(outs, outNames);
delta = outs[0];
score = outs[1];
score = score.reshape(0, { 2, trackState.anchorNum, trackState.scoreSize, trackState.scoreSize });
delta = delta.reshape(0, { 4, trackState.anchorNum, trackState.scoreSize, trackState.scoreSize });
softmax(score, score);
targetBox.width *= scaleZ;
targetBox.height *= scaleZ;
score = score.row(1);
score = score.reshape(0, { 5, 19, 19 });
// Post processing
delta.row(0) = delta.row(0).mul(trackState.anchors.row(2)) + trackState.anchors.row(0);
delta.row(1) = delta.row(1).mul(trackState.anchors.row(3)) + trackState.anchors.row(1);
exp(delta.row(2), delta.row(2));
delta.row(2) = delta.row(2).mul(trackState.anchors.row(2));
exp(delta.row(3), delta.row(3));
delta.row(3) = delta.row(3).mul(trackState.anchors.row(3));
sc = sizeCal(delta.row(2), delta.row(3)) / sizeCal(targetBox.width, targetBox.height);
elementMax(sc);
rc = delta.row(2).mul(1 / delta.row(3));
rc = (targetBox.width / targetBox.height) / rc;
elementMax(rc);
// Calculating the penalty
exp(((rc.mul(sc) - 1.) * trackState.penaltyK * (-1.0)), penalty);
penalty = penalty.reshape(0, { trackState.anchorNum, trackState.scoreSize, trackState.scoreSize });
pscore = penalty.mul(score);
pscore = pscore * (1.0 - trackState.windowInfluence) + trackState.windows * trackState.windowInfluence;
int bestID[] = { 0 };
// Find the index of best score.
minMaxIdx(pscore.reshape(0, { trackState.anchorNum * trackState.scoreSize * trackState.scoreSize, 1 }), 0, 0, 0, bestID);
delta = delta.reshape(0, { 4, trackState.anchorNum * trackState.scoreSize * trackState.scoreSize });
penalty = penalty.reshape(0, { trackState.anchorNum * trackState.scoreSize * trackState.scoreSize, 1 });
score = score.reshape(0, { trackState.anchorNum * trackState.scoreSize * trackState.scoreSize, 1 });
int index[] = { 0, bestID[0] };
Rect2f resBox = { 0, 0, 0, 0 };
resBox.x = delta.at<float>(index) / scaleZ;
index[0] = 1;
resBox.y = delta.at<float>(index) / scaleZ;
index[0] = 2;
resBox.width = delta.at<float>(index) / scaleZ;
index[0] = 3;
resBox.height = delta.at<float>(index) / scaleZ;
float lr = penalty.at<float>(bestID) * score.at<float>(bestID) * trackState.lr;
resBox.x = resBox.x + targetBox.x;
resBox.y = resBox.y + targetBox.y;
targetBox.width /= scaleZ;
targetBox.height /= scaleZ;
resBox.width = targetBox.width * (1 - lr) + resBox.width * lr;
resBox.height = targetBox.height * (1 - lr) + resBox.height * lr;
resBox.x = float(fmax(0., fmin(float(trackState.imgSize.width), resBox.x)));
resBox.y = float(fmax(0., fmin(float(trackState.imgSize.height), resBox.y)));
resBox.width = float(fmax(10., fmin(float(trackState.imgSize.width), resBox.width)));
resBox.height = float(fmax(10., fmin(float(trackState.imgSize.height), resBox.height)));
trackState.targetBox = resBox;
return score.at<float>(bestID);
}
void trackerInit(Mat img, trackerConfig& trackState, Net& siamRPN, Net& siamKernelR1, Net& siamKernelCL1)
{
Rect2f targetBox = trackState.targetBox;
Mat anchors = generateAnchors(trackState);
trackState.anchors = anchors;
Mat windows = generateHanningWindow(trackState);
trackState.windows = windows;
trackState.imgSize = img.size();
trackState.avgChans = mean(img);
float wc = targetBox.width + trackState.contextAmount * (targetBox.width + targetBox.height);
float hc = targetBox.height + trackState.contextAmount * (targetBox.width + targetBox.height);
float sz = (float)cvRound(sqrt(wc * hc));
Mat zCrop = getSubwindow(img, targetBox, sz, trackState.avgChans);
static Mat blob;
blobFromImage(zCrop, blob, 1.0, Size(trackState.exemplarSize, trackState.exemplarSize), Scalar(), trackState.swapRB, false, CV_32F);
siamRPN.setInput(blob);
Mat out1;
siamRPN.forward(out1, "63");
siamKernelCL1.setInput(out1);
siamKernelR1.setInput(out1);
Mat cls1 = siamKernelCL1.forward();
Mat r1 = siamKernelR1.forward();
std::vector<int> r1_shape = { 20, 256, 4, 4 }, cls1_shape = { 10, 256, 4, 4 };
siamRPN.setParam(siamRPN.getLayerId("65"), 0, r1.reshape(0, r1_shape));
siamRPN.setParam(siamRPN.getLayerId("68"), 0, cls1.reshape(0, cls1_shape));
}
int main(int argc, char **argv)
{
try
{
return run(argc, argv);
}
catch (const std::exception& e)
{
std::cerr << "FATAL: C++ exception: " << e.what() << std::endl;
return 1;
}
}