|
|
|
/*
|
|
|
|
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
|
|
|
|
* Released to public domain under terms of the BSD Simplified license.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions are met:
|
|
|
|
* * Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* * Neither the name of the organization nor the names of its contributors
|
|
|
|
* may be used to endorse or promote products derived from this software
|
|
|
|
* without specific prior written permission.
|
|
|
|
*
|
|
|
|
* See <http://www.opensource.org/licenses/bsd-license>
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "opencv2/opencv.hpp"
|
|
|
|
|
|
|
|
#include <iostream>
|
|
|
|
#include <fstream>
|
|
|
|
#include <sstream>
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
Mat toGrayscale(InputArray _src) {
|
|
|
|
Mat src = _src.getMat();
|
|
|
|
// only allow one channel
|
|
|
|
if(src.channels() != 1)
|
|
|
|
CV_Error(CV_StsBadArg, "Only Matrices with one channel are supported");
|
|
|
|
// create and return normalized image
|
|
|
|
Mat dst;
|
|
|
|
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1);
|
|
|
|
return dst;
|
|
|
|
}
|
|
|
|
|
|
|
|
void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
|
|
|
|
std::ifstream file(filename.c_str(), ifstream::in);
|
|
|
|
if (!file)
|
|
|
|
throw std::exception();
|
|
|
|
string line, path, classlabel;
|
|
|
|
while (getline(file, line)) {
|
|
|
|
stringstream liness(line);
|
|
|
|
getline(liness, path, separator);
|
|
|
|
getline(liness, classlabel);
|
|
|
|
images.push_back(imread(path, 0));
|
|
|
|
labels.push_back(atoi(classlabel.c_str()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int main(int argc, const char *argv[]) {
|
|
|
|
// check for command line arguments
|
|
|
|
if (argc != 2) {
|
|
|
|
cout << "usage: " << argv[0] << " <csv.ext>" << endl;
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
// path to your CSV
|
|
|
|
string fn_csv = string(argv[1]);
|
|
|
|
// images and corresponding labels
|
|
|
|
vector<Mat> images;
|
|
|
|
vector<int> labels;
|
|
|
|
// read in the data
|
|
|
|
try {
|
|
|
|
read_csv(fn_csv, images, labels);
|
|
|
|
} catch (exception&) {
|
|
|
|
cerr << "Error opening file \"" << fn_csv << "\"." << endl;
|
|
|
|
exit(1);
|
|
|
|
}
|
|
|
|
// get width and height
|
|
|
|
//int width = images[0].cols;
|
|
|
|
int height = images[0].rows;
|
|
|
|
// get test instances
|
|
|
|
Mat testSample = images[images.size() - 1];
|
|
|
|
int testLabel = labels[labels.size() - 1];
|
|
|
|
// ... and delete last element
|
|
|
|
images.pop_back();
|
|
|
|
labels.pop_back();
|
|
|
|
// build the Fisherfaces model
|
|
|
|
Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
|
|
|
|
model->train(images, labels);
|
|
|
|
// test model
|
|
|
|
int predicted = model->predict(testSample);
|
|
|
|
cout << "predicted class = " << predicted << endl;
|
|
|
|
cout << "actual class = " << testLabel << endl;
|
|
|
|
// get the eigenvectors
|
|
|
|
Mat W = model->eigenvectors();
|
|
|
|
// show first 10 fisherfaces
|
|
|
|
for (int i = 0; i < min(10, W.cols); i++) {
|
|
|
|
// get eigenvector #i
|
|
|
|
Mat ev = W.col(i).clone();
|
|
|
|
// reshape to original size AND normalize between [0...255]
|
|
|
|
Mat grayscale = toGrayscale(ev.reshape(1, height));
|
|
|
|
// show image (with Jet colormap)
|
|
|
|
Mat cgrayscale;
|
|
|
|
applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
|
|
|
|
imshow(format("%d", i), cgrayscale);
|
|
|
|
}
|
|
|
|
waitKey(0);
|
|
|
|
return 0;
|
|
|
|
}
|