Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

216 lines
7.6 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
namespace opencv_test { namespace {
using cv::ml::SVM;
using cv::ml::TrainData;
//--------------------------------------------------------------------------------------------
class CV_SVMTrainAutoTest : public cvtest::BaseTest {
public:
CV_SVMTrainAutoTest() {}
protected:
virtual void run( int start_from );
};
void CV_SVMTrainAutoTest::run( int /*start_from*/ )
{
int datasize = 100;
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
RNG rng(0);
for (int i = 0; i < datasize; ++i)
{
int response = rng.uniform(0, 2); // Random from {0, 1}.
samples.at<float>( i, 0 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
samples.at<float>( i, 1 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
responses.at<int>( i, 0 ) = response;
}
cv::Ptr<TrainData> data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
cv::Ptr<SVM> svm = SVM::create();
svm->trainAuto( data, 10 ); // 2-fold cross validation.
float test_data0[2] = {0.25f, 0.25f};
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
float result0 = svm->predict( test_point0 );
float test_data1[2] = {0.75f, 0.75f};
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
float result1 = svm->predict( test_point1 );
if ( fabs( result0 - 0 ) > 0.001 || fabs( result1 - 1 ) > 0.001 )
{
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
}
}
TEST(ML_SVM, trainauto) { CV_SVMTrainAutoTest test; test.safe_run(); }
TEST(ML_SVM, trainauto_sigmoid)
{
const int datasize = 100;
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
const float scale_factor = 0.5;
const float radius = 2.0;
// Populate samples with data that can be split into two concentric circles
for (int i = 0; i < datasize; i+=2)
{
const float pi = 3.14159f;
const float angle_rads = (i/datasize) * pi;
const float x = radius * cos(angle_rads);
const float y = radius * cos(angle_rads);
// Larger circle
samples.at<float>( i, 0 ) = x;
samples.at<float>( i, 1 ) = y;
responses.at<int>( i, 0 ) = 0;
// Smaller circle
samples.at<float>( i + 1, 0 ) = x * scale_factor;
samples.at<float>( i + 1, 1 ) = y * scale_factor;
responses.at<int>( i + 1, 0 ) = 1;
}
cv::Ptr<TrainData> data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
cv::Ptr<SVM> svm = SVM::create();
svm->setKernel(SVM::SIGMOID);
svm->setGamma(10.0);
svm->setCoef0(-10.0);
svm->trainAuto( data, 10 ); // 2-fold cross validation.
float test_data0[2] = {radius, radius};
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
ASSERT_EQ(0, svm->predict( test_point0 ));
float test_data1[2] = {scale_factor * radius, scale_factor * radius};
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
ASSERT_EQ(1, svm->predict( test_point1 ));
}
TEST(ML_SVM, trainAuto_regression_5369)
{
int datasize = 100;
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
RNG rng(0); // fixed!
for (int i = 0; i < datasize; ++i)
{
int response = rng.uniform(0, 2); // Random from {0, 1}.
samples.at<float>( i, 0 ) = 0;
samples.at<float>( i, 1 ) = (0.5f - response) * rng.uniform(0.f, 1.2f) + response;
responses.at<int>( i, 0 ) = response;
}
cv::Ptr<TrainData> data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
cv::Ptr<SVM> svm = SVM::create();
svm->trainAuto( data, 10 ); // 2-fold cross validation.
float test_data0[2] = {0.25f, 0.25f};
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
float result0 = svm->predict( test_point0 );
float test_data1[2] = {0.75f, 0.75f};
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
float result1 = svm->predict( test_point1 );
EXPECT_EQ(0., result0);
EXPECT_EQ(1., result1);
}
class CV_SVMGetSupportVectorsTest : public cvtest::BaseTest {
public:
CV_SVMGetSupportVectorsTest() {}
protected:
virtual void run( int startFrom );
};
void CV_SVMGetSupportVectorsTest::run(int /*startFrom*/ )
{
int code = cvtest::TS::OK;
// Set up training data
int labels[4] = {1, -1, -1, -1};
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
Mat labelsMat(4, 1, CV_32SC1, labels);
Ptr<SVM> svm = SVM::create();
svm->setType(SVM::C_SVC);
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6));
// Test retrieval of SVs and compressed SVs on linear SVM
svm->setKernel(SVM::LINEAR);
svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat);
Mat sv = svm->getSupportVectors();
CV_Assert(sv.rows == 1); // by default compressed SV returned
sv = svm->getUncompressedSupportVectors();
CV_Assert(sv.rows == 3);
// Test retrieval of SVs and compressed SVs on non-linear SVM
svm->setKernel(SVM::POLY);
svm->setDegree(2);
svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat);
sv = svm->getSupportVectors();
CV_Assert(sv.rows == 3);
sv = svm->getUncompressedSupportVectors();
CV_Assert(sv.rows == 0); // inapplicable for non-linear SVMs
ts->set_failed_test_info(code);
}
TEST(ML_SVM, getSupportVectors) { CV_SVMGetSupportVectorsTest test; test.safe_run(); }
}} // namespace