|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
static
|
|
|
|
bool mats_equal(const Mat& lhs, const Mat& rhs)
|
|
|
|
{
|
|
|
|
if (lhs.channels() != rhs.channels() ||
|
|
|
|
lhs.depth() != rhs.depth() ||
|
|
|
|
lhs.size().height != rhs.size().height ||
|
|
|
|
lhs.size().width != rhs.size().width)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat diff = (lhs != rhs);
|
|
|
|
const Scalar s = sum(diff);
|
|
|
|
for (int i = 0; i < s.channels; ++i)
|
|
|
|
{
|
|
|
|
if (s[i] != 0)
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
static
|
|
|
|
bool imread_compare(const string& filepath, int flags = IMREAD_COLOR)
|
|
|
|
{
|
|
|
|
vector<Mat> pages;
|
|
|
|
if (!imreadmulti(filepath, pages, flags) ||
|
|
|
|
pages.empty())
|
|
|
|
{
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
const Mat single = imread(filepath, flags);
|
|
|
|
return mats_equal(single, pages[0]);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgcodecs_imread, regression)
|
|
|
|
{
|
|
|
|
const char* const filenames[] =
|
|
|
|
{
|
|
|
|
"color_palette_alpha.png",
|
|
|
|
"multipage.tif",
|
|
|
|
"rle.hdr",
|
|
|
|
"ordinary.bmp",
|
|
|
|
"rle8.bmp",
|
|
|
|
"test_1_c1.jpg"
|
|
|
|
};
|
|
|
|
|
|
|
|
const string folder = string(cvtest::TS::ptr()->get_data_path()) + "/readwrite/";
|
|
|
|
|
|
|
|
for (size_t i = 0; i < sizeof(filenames) / sizeof(filenames[0]); ++i)
|
|
|
|
{
|
|
|
|
ASSERT_TRUE(imread_compare(folder + string(filenames[i]), IMREAD_UNCHANGED));
|
|
|
|
ASSERT_TRUE(imread_compare(folder + string(filenames[i]), IMREAD_GRAYSCALE));
|
|
|
|
ASSERT_TRUE(imread_compare(folder + string(filenames[i]), IMREAD_COLOR));
|
|
|
|
ASSERT_TRUE(imread_compare(folder + string(filenames[i]), IMREAD_ANYDEPTH));
|
|
|
|
ASSERT_TRUE(imread_compare(folder + string(filenames[i]), IMREAD_ANYCOLOR));
|
|
|
|
if (i != 2) // GDAL does not support hdr
|
|
|
|
ASSERT_TRUE(imread_compare(folder + string(filenames[i]), IMREAD_LOAD_GDAL));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
class CV_GrfmtWriteBigImageTest : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
void run(int)
|
|
|
|
{
|
|
|
|
try
|
|
|
|
{
|
|
|
|
ts->printf(cvtest::TS::LOG, "start reading big image\n");
|
|
|
|
Mat img = imread(string(ts->get_data_path()) + "readwrite/read.png");
|
|
|
|
ts->printf(cvtest::TS::LOG, "finish reading big image\n");
|
|
|
|
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
|
|
|
ts->printf(cvtest::TS::LOG, "start writing big image\n");
|
|
|
|
imwrite(cv::tempfile(".png"), img);
|
|
|
|
ts->printf(cvtest::TS::LOG, "finish writing big image\n");
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
|
|
|
|
}
|
|
|
|
ts->set_failed_test_info(cvtest::TS::OK);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
string ext_from_int(int ext)
|
|
|
|
{
|
|
|
|
#ifdef HAVE_PNG
|
|
|
|
if (ext == 0) return ".png";
|
|
|
|
#endif
|
|
|
|
if (ext == 1) return ".bmp";
|
|
|
|
if (ext == 2) return ".pgm";
|
|
|
|
#ifdef HAVE_TIFF
|
|
|
|
if (ext == 3) return ".tiff";
|
|
|
|
#endif
|
|
|
|
return "";
|
|
|
|
}
|
|
|
|
|
|
|
|
class CV_GrfmtWriteSequenceImageTest : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
void run(int)
|
|
|
|
{
|
|
|
|
try
|
|
|
|
{
|
|
|
|
const int img_r = 640;
|
|
|
|
const int img_c = 480;
|
|
|
|
|
|
|
|
for (int k = 1; k <= 5; ++k)
|
|
|
|
{
|
|
|
|
for (int ext = 0; ext < 4; ++ext) // 0 - png, 1 - bmp, 2 - pgm, 3 - tiff
|
|
|
|
{
|
|
|
|
if(ext_from_int(ext).empty())
|
|
|
|
continue;
|
|
|
|
for (int num_channels = 1; num_channels <= 4; num_channels++)
|
|
|
|
{
|
|
|
|
if (num_channels == 2) continue;
|
|
|
|
if (num_channels == 4 && ext!=3 /*TIFF*/) continue;
|
|
|
|
|
|
|
|
ts->printf(ts->LOG, "image type depth:%d channels:%d ext: %s\n", CV_8U, num_channels, ext_from_int(ext).c_str());
|
|
|
|
Mat img(img_r * k, img_c * k, CV_MAKETYPE(CV_8U, num_channels), Scalar::all(0));
|
|
|
|
circle(img, Point2i((img_c * k) / 2, (img_r * k) / 2), std::min((img_r * k), (img_c * k)) / 4 , Scalar::all(255));
|
|
|
|
|
|
|
|
string img_path = cv::tempfile(ext_from_int(ext).c_str());
|
|
|
|
ts->printf(ts->LOG, "writing image : %s\n", img_path.c_str());
|
|
|
|
imwrite(img_path, img);
|
|
|
|
|
|
|
|
ts->printf(ts->LOG, "reading test image : %s\n", img_path.c_str());
|
|
|
|
Mat img_test = imread(img_path, IMREAD_UNCHANGED);
|
|
|
|
|
|
|
|
if (img_test.empty()) ts->set_failed_test_info(ts->FAIL_MISMATCH);
|
|
|
|
|
|
|
|
CV_Assert(img.size() == img_test.size());
|
|
|
|
CV_Assert(img.type() == img_test.type());
|
|
|
|
CV_Assert(num_channels == img_test.channels());
|
|
|
|
|
|
|
|
double n = cvtest::norm(img, img_test, NORM_L2);
|
|
|
|
if ( n > 1.0)
|
|
|
|
{
|
|
|
|
ts->printf(ts->LOG, "norm = %f \n", n);
|
|
|
|
ts->set_failed_test_info(ts->FAIL_MISMATCH);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#ifdef HAVE_JPEG
|
|
|
|
for (int num_channels = 1; num_channels <= 3; num_channels+=2)
|
|
|
|
{
|
|
|
|
// jpeg
|
|
|
|
ts->printf(ts->LOG, "image type depth:%d channels:%d ext: %s\n", CV_8U, num_channels, ".jpg");
|
|
|
|
Mat img(img_r * k, img_c * k, CV_MAKETYPE(CV_8U, num_channels), Scalar::all(0));
|
|
|
|
circle(img, Point2i((img_c * k) / 2, (img_r * k) / 2), std::min((img_r * k), (img_c * k)) / 4 , Scalar::all(255));
|
|
|
|
|
|
|
|
string filename = cv::tempfile(".jpg");
|
|
|
|
imwrite(filename, img);
|
|
|
|
ts->printf(ts->LOG, "reading test image : %s\n", filename.c_str());
|
|
|
|
Mat img_test = imread(filename, IMREAD_UNCHANGED);
|
|
|
|
|
|
|
|
if (img_test.empty()) ts->set_failed_test_info(ts->FAIL_MISMATCH);
|
|
|
|
|
|
|
|
CV_Assert(img.size() == img_test.size());
|
|
|
|
CV_Assert(img.type() == img_test.type());
|
|
|
|
|
|
|
|
// JPEG format does not provide 100% accuracy
|
|
|
|
// using fuzzy image comparison
|
|
|
|
double n = cvtest::norm(img, img_test, NORM_L1);
|
|
|
|
double expected = 0.05 * img.size().area();
|
|
|
|
if ( n > expected)
|
|
|
|
{
|
|
|
|
ts->printf(ts->LOG, "norm = %f > expected = %f \n", n, expected);
|
|
|
|
ts->set_failed_test_info(ts->FAIL_MISMATCH);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HAVE_TIFF
|
|
|
|
for (int num_channels = 1; num_channels <= 4; num_channels++)
|
|
|
|
{
|
|
|
|
if (num_channels == 2) continue;
|
|
|
|
// tiff
|
|
|
|
ts->printf(ts->LOG, "image type depth:%d channels:%d ext: %s\n", CV_16U, num_channels, ".tiff");
|
|
|
|
Mat img(img_r * k, img_c * k, CV_MAKETYPE(CV_16U, num_channels), Scalar::all(0));
|
|
|
|
circle(img, Point2i((img_c * k) / 2, (img_r * k) / 2), std::min((img_r * k), (img_c * k)) / 4 , Scalar::all(255));
|
|
|
|
|
|
|
|
string filename = cv::tempfile(".tiff");
|
|
|
|
imwrite(filename, img);
|
|
|
|
ts->printf(ts->LOG, "reading test image : %s\n", filename.c_str());
|
|
|
|
Mat img_test = imread(filename, IMREAD_UNCHANGED);
|
|
|
|
|
|
|
|
if (img_test.empty()) ts->set_failed_test_info(ts->FAIL_MISMATCH);
|
|
|
|
|
|
|
|
CV_Assert(img.size() == img_test.size());
|
|
|
|
|
|
|
|
ts->printf(ts->LOG, "img : %d ; %d \n", img.channels(), img.depth());
|
|
|
|
ts->printf(ts->LOG, "img_test : %d ; %d \n", img_test.channels(), img_test.depth());
|
|
|
|
|
|
|
|
CV_Assert(img.type() == img_test.type());
|
|
|
|
|
|
|
|
|
|
|
|
double n = cvtest::norm(img, img_test, NORM_L2);
|
|
|
|
if ( n > 1.0)
|
|
|
|
{
|
|
|
|
ts->printf(ts->LOG, "norm = %f \n", n);
|
|
|
|
ts->set_failed_test_info(ts->FAIL_MISMATCH);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
catch(const cv::Exception & e)
|
|
|
|
{
|
|
|
|
ts->printf(ts->LOG, "Exception: %s\n" , e.what());
|
|
|
|
ts->set_failed_test_info(ts->FAIL_MISMATCH);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class CV_GrfmtReadBMPRLE8Test : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
void run(int)
|
|
|
|
{
|
|
|
|
try
|
|
|
|
{
|
|
|
|
Mat rle = imread(string(ts->get_data_path()) + "readwrite/rle8.bmp");
|
|
|
|
Mat bmp = imread(string(ts->get_data_path()) + "readwrite/ordinary.bmp");
|
|
|
|
if (cvtest::norm(rle-bmp, NORM_L2)>1.e-10)
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_BAD_ACCURACY);
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
|
|
|
|
}
|
|
|
|
ts->set_failed_test_info(cvtest::TS::OK);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef HAVE_PNG
|
|
|
|
TEST(Imgcodecs_Image, write_big) { CV_GrfmtWriteBigImageTest test; test.safe_run(); }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Image, write_imageseq) { CV_GrfmtWriteSequenceImageTest test; test.safe_run(); }
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Image, read_bmp_rle8) { CV_GrfmtReadBMPRLE8Test test; test.safe_run(); }
|
|
|
|
|
|
|
|
#ifdef HAVE_PNG
|
|
|
|
class CV_GrfmtPNGEncodeTest : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
void run(int)
|
|
|
|
{
|
|
|
|
try
|
|
|
|
{
|
|
|
|
vector<uchar> buff;
|
|
|
|
Mat im = Mat::zeros(1000,1000, CV_8U);
|
|
|
|
//randu(im, 0, 256);
|
|
|
|
vector<int> param;
|
|
|
|
param.push_back(IMWRITE_PNG_COMPRESSION);
|
|
|
|
param.push_back(3); //default(3) 0-9.
|
|
|
|
cv::imencode(".png" ,im ,buff, param);
|
|
|
|
|
|
|
|
// hangs
|
|
|
|
Mat im2 = imdecode(buff,IMREAD_ANYDEPTH);
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
|
|
|
|
}
|
|
|
|
ts->set_failed_test_info(cvtest::TS::OK);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Image, encode_png) { CV_GrfmtPNGEncodeTest test; test.safe_run(); }
|
|
|
|
|
|
|
|
TEST(Imgcodecs_ImreadVSCvtColor, regression)
|
|
|
|
{
|
|
|
|
cvtest::TS& ts = *cvtest::TS::ptr();
|
|
|
|
|
|
|
|
const int MAX_MEAN_DIFF = 1;
|
|
|
|
const int MAX_ABS_DIFF = 10;
|
|
|
|
|
|
|
|
string imgName = string(ts.get_data_path()) + "/../cv/shared/lena.png";
|
|
|
|
Mat original_image = imread(imgName);
|
|
|
|
Mat gray_by_codec = imread(imgName, 0);
|
|
|
|
Mat gray_by_cvt;
|
|
|
|
|
|
|
|
cvtColor(original_image, gray_by_cvt, CV_BGR2GRAY);
|
|
|
|
|
|
|
|
Mat diff;
|
|
|
|
absdiff(gray_by_codec, gray_by_cvt, diff);
|
|
|
|
|
|
|
|
double actual_avg_diff = (double)mean(diff)[0];
|
|
|
|
double actual_maxval, actual_minval;
|
|
|
|
minMaxLoc(diff, &actual_minval, &actual_maxval);
|
|
|
|
//printf("actual avg = %g, actual maxdiff = %g, npixels = %d\n", actual_avg_diff, actual_maxval, (int)diff.total());
|
|
|
|
|
|
|
|
EXPECT_LT(actual_avg_diff, MAX_MEAN_DIFF);
|
|
|
|
EXPECT_LT(actual_maxval, MAX_ABS_DIFF);
|
|
|
|
}
|
|
|
|
|
|
|
|
//Test OpenCV issue 3075 is solved
|
|
|
|
class CV_GrfmtReadPNGColorPaletteWithAlphaTest : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
void run(int)
|
|
|
|
{
|
|
|
|
try
|
|
|
|
{
|
|
|
|
// First Test : Read PNG with alpha, imread flag -1
|
|
|
|
Mat img = imread(string(ts->get_data_path()) + "readwrite/color_palette_alpha.png",-1);
|
|
|
|
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
|
|
|
|
|
|
|
ASSERT_TRUE(img.channels() == 4);
|
|
|
|
|
|
|
|
unsigned char* img_data = img.ptr();
|
|
|
|
|
|
|
|
// Verification first pixel is red in BGRA
|
|
|
|
ASSERT_TRUE(img_data[0] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[1] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[2] == 0xFF);
|
|
|
|
ASSERT_TRUE(img_data[3] == 0xFF);
|
|
|
|
|
|
|
|
// Verification second pixel is red in BGRA
|
|
|
|
ASSERT_TRUE(img_data[4] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[5] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[6] == 0xFF);
|
|
|
|
ASSERT_TRUE(img_data[7] == 0xFF);
|
|
|
|
|
|
|
|
// Second Test : Read PNG without alpha, imread flag -1
|
|
|
|
img = imread(string(ts->get_data_path()) + "readwrite/color_palette_no_alpha.png",-1);
|
|
|
|
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
|
|
|
|
|
|
|
ASSERT_TRUE(img.channels() == 3);
|
|
|
|
|
|
|
|
img_data = img.ptr();
|
|
|
|
|
|
|
|
// Verification first pixel is red in BGR
|
|
|
|
ASSERT_TRUE(img_data[0] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[1] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[2] == 0xFF);
|
|
|
|
|
|
|
|
// Verification second pixel is red in BGR
|
|
|
|
ASSERT_TRUE(img_data[3] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[4] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[5] == 0xFF);
|
|
|
|
|
|
|
|
// Third Test : Read PNG with alpha, imread flag 1
|
|
|
|
img = imread(string(ts->get_data_path()) + "readwrite/color_palette_alpha.png",1);
|
|
|
|
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
|
|
|
|
|
|
|
ASSERT_TRUE(img.channels() == 3);
|
|
|
|
|
|
|
|
img_data = img.ptr();
|
|
|
|
|
|
|
|
// Verification first pixel is red in BGR
|
|
|
|
ASSERT_TRUE(img_data[0] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[1] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[2] == 0xFF);
|
|
|
|
|
|
|
|
// Verification second pixel is red in BGR
|
|
|
|
ASSERT_TRUE(img_data[3] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[4] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[5] == 0xFF);
|
|
|
|
|
|
|
|
// Fourth Test : Read PNG without alpha, imread flag 1
|
|
|
|
img = imread(string(ts->get_data_path()) + "readwrite/color_palette_no_alpha.png",1);
|
|
|
|
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
|
|
|
|
|
|
|
ASSERT_TRUE(img.channels() == 3);
|
|
|
|
|
|
|
|
img_data = img.ptr();
|
|
|
|
|
|
|
|
// Verification first pixel is red in BGR
|
|
|
|
ASSERT_TRUE(img_data[0] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[1] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[2] == 0xFF);
|
|
|
|
|
|
|
|
// Verification second pixel is red in BGR
|
|
|
|
ASSERT_TRUE(img_data[3] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[4] == 0x00);
|
|
|
|
ASSERT_TRUE(img_data[5] == 0xFF);
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
|
|
|
|
}
|
|
|
|
ts->set_failed_test_info(cvtest::TS::OK);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Image, read_png_color_palette_with_alpha) { CV_GrfmtReadPNGColorPaletteWithAlphaTest test; test.safe_run(); }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HAVE_JPEG
|
|
|
|
TEST(Imgcodecs_Jpeg, encode_empty)
|
|
|
|
{
|
|
|
|
cv::Mat img;
|
|
|
|
std::vector<uchar> jpegImg;
|
|
|
|
|
|
|
|
ASSERT_THROW(cv::imencode(".jpg", img, jpegImg), cv::Exception);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Jpeg, encode_decode_progressive_jpeg)
|
|
|
|
{
|
|
|
|
cvtest::TS& ts = *cvtest::TS::ptr();
|
|
|
|
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
|
|
|
|
cv::Mat img = cv::imread(input);
|
|
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
|
|
|
|
std::vector<int> params;
|
|
|
|
params.push_back(IMWRITE_JPEG_PROGRESSIVE);
|
|
|
|
params.push_back(1);
|
|
|
|
|
|
|
|
string output_progressive = cv::tempfile(".jpg");
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(output_progressive, img, params));
|
|
|
|
cv::Mat img_jpg_progressive = cv::imread(output_progressive);
|
|
|
|
|
|
|
|
string output_normal = cv::tempfile(".jpg");
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(output_normal, img));
|
|
|
|
cv::Mat img_jpg_normal = cv::imread(output_normal);
|
|
|
|
|
|
|
|
EXPECT_EQ(0, cvtest::norm(img_jpg_progressive, img_jpg_normal, NORM_INF));
|
|
|
|
|
|
|
|
remove(output_progressive.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Jpeg, encode_decode_optimize_jpeg)
|
|
|
|
{
|
|
|
|
cvtest::TS& ts = *cvtest::TS::ptr();
|
|
|
|
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
|
|
|
|
cv::Mat img = cv::imread(input);
|
|
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
|
|
|
|
std::vector<int> params;
|
|
|
|
params.push_back(IMWRITE_JPEG_OPTIMIZE);
|
|
|
|
params.push_back(1);
|
|
|
|
|
|
|
|
string output_optimized = cv::tempfile(".jpg");
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(output_optimized, img, params));
|
|
|
|
cv::Mat img_jpg_optimized = cv::imread(output_optimized);
|
|
|
|
|
|
|
|
string output_normal = cv::tempfile(".jpg");
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(output_normal, img));
|
|
|
|
cv::Mat img_jpg_normal = cv::imread(output_normal);
|
|
|
|
|
|
|
|
EXPECT_EQ(0, cvtest::norm(img_jpg_optimized, img_jpg_normal, NORM_INF));
|
|
|
|
|
|
|
|
remove(output_optimized.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Jpeg, encode_decode_rst_jpeg)
|
|
|
|
{
|
|
|
|
cvtest::TS& ts = *cvtest::TS::ptr();
|
|
|
|
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
|
|
|
|
cv::Mat img = cv::imread(input);
|
|
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
|
|
|
|
std::vector<int> params;
|
|
|
|
params.push_back(IMWRITE_JPEG_RST_INTERVAL);
|
|
|
|
params.push_back(1);
|
|
|
|
|
|
|
|
string output_rst = cv::tempfile(".jpg");
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(output_rst, img, params));
|
|
|
|
cv::Mat img_jpg_rst = cv::imread(output_rst);
|
|
|
|
|
|
|
|
string output_normal = cv::tempfile(".jpg");
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(output_normal, img));
|
|
|
|
cv::Mat img_jpg_normal = cv::imread(output_normal);
|
|
|
|
|
|
|
|
EXPECT_EQ(0, cvtest::norm(img_jpg_rst, img_jpg_normal, NORM_INF));
|
|
|
|
|
|
|
|
remove(output_rst.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef HAVE_TIFF
|
|
|
|
|
|
|
|
// these defines are used to resolve conflict between tiff.h and opencv2/core/types_c.h
|
|
|
|
#define uint64 uint64_hack_
|
|
|
|
#define int64 int64_hack_
|
|
|
|
#include "tiff.h"
|
|
|
|
|
|
|
|
#ifdef ANDROID
|
|
|
|
// Test disabled as it uses a lot of memory.
|
|
|
|
// It is killed with SIGKILL by out of memory killer.
|
|
|
|
TEST(Imgcodecs_Tiff, DISABLED_decode_tile16384x16384)
|
|
|
|
#else
|
|
|
|
TEST(Imgcodecs_Tiff, decode_tile16384x16384)
|
|
|
|
#endif
|
|
|
|
{
|
|
|
|
// see issue #2161
|
|
|
|
cv::Mat big(16384, 16384, CV_8UC1, cv::Scalar::all(0));
|
|
|
|
string file3 = cv::tempfile(".tiff");
|
|
|
|
string file4 = cv::tempfile(".tiff");
|
|
|
|
|
|
|
|
std::vector<int> params;
|
|
|
|
params.push_back(TIFFTAG_ROWSPERSTRIP);
|
|
|
|
params.push_back(big.rows);
|
|
|
|
cv::imwrite(file4, big, params);
|
|
|
|
cv::imwrite(file3, big.colRange(0, big.cols - 1), params);
|
|
|
|
big.release();
|
|
|
|
|
|
|
|
try
|
|
|
|
{
|
|
|
|
cv::imread(file3, IMREAD_UNCHANGED);
|
|
|
|
EXPECT_NO_THROW(cv::imread(file4, IMREAD_UNCHANGED));
|
|
|
|
}
|
|
|
|
catch(const std::bad_alloc&)
|
|
|
|
{
|
|
|
|
// have no enough memory
|
|
|
|
}
|
|
|
|
|
|
|
|
remove(file3.c_str());
|
|
|
|
remove(file4.c_str());
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Tiff, write_read_16bit_big_little_endian)
|
|
|
|
{
|
|
|
|
// see issue #2601 "16-bit Grayscale TIFF Load Failures Due to Buffer Underflow and Endianness"
|
|
|
|
|
|
|
|
// Setup data for two minimal 16-bit grayscale TIFF files in both endian formats
|
|
|
|
uchar tiff_sample_data[2][86] = { {
|
|
|
|
// Little endian
|
|
|
|
0x49, 0x49, 0x2a, 0x00, 0x0c, 0x00, 0x00, 0x00, 0xad, 0xde, 0xef, 0xbe, 0x06, 0x00, 0x00, 0x01,
|
|
|
|
0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, 0x01, 0x01, 0x03, 0x00, 0x01, 0x00,
|
|
|
|
0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x10, 0x00,
|
|
|
|
0x00, 0x00, 0x06, 0x01, 0x03, 0x00, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x11, 0x01,
|
|
|
|
0x04, 0x00, 0x01, 0x00, 0x00, 0x00, 0x08, 0x00, 0x00, 0x00, 0x17, 0x01, 0x04, 0x00, 0x01, 0x00,
|
|
|
|
0x00, 0x00, 0x04, 0x00, 0x00, 0x00 }, {
|
|
|
|
// Big endian
|
|
|
|
0x4d, 0x4d, 0x00, 0x2a, 0x00, 0x00, 0x00, 0x0c, 0xde, 0xad, 0xbe, 0xef, 0x00, 0x06, 0x01, 0x00,
|
|
|
|
0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x02, 0x00, 0x00, 0x01, 0x01, 0x00, 0x03, 0x00, 0x00,
|
|
|
|
0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x01, 0x02, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x10,
|
|
|
|
0x00, 0x00, 0x01, 0x06, 0x00, 0x03, 0x00, 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x00, 0x01, 0x11,
|
|
|
|
0x00, 0x04, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x08, 0x01, 0x17, 0x00, 0x04, 0x00, 0x00,
|
|
|
|
0x00, 0x01, 0x00, 0x00, 0x00, 0x04 }
|
|
|
|
};
|
|
|
|
|
|
|
|
// Test imread() for both a little endian TIFF and big endian TIFF
|
|
|
|
for (int i = 0; i < 2; i++)
|
|
|
|
{
|
|
|
|
string filename = cv::tempfile(".tiff");
|
|
|
|
|
|
|
|
// Write sample TIFF file
|
|
|
|
FILE* fp = fopen(filename.c_str(), "wb");
|
|
|
|
ASSERT_TRUE(fp != NULL);
|
|
|
|
ASSERT_EQ((size_t)1, fwrite(tiff_sample_data, 86, 1, fp));
|
|
|
|
fclose(fp);
|
|
|
|
|
|
|
|
Mat img = imread(filename, IMREAD_UNCHANGED);
|
|
|
|
|
|
|
|
EXPECT_EQ(1, img.rows);
|
|
|
|
EXPECT_EQ(2, img.cols);
|
|
|
|
EXPECT_EQ(CV_16U, img.type());
|
|
|
|
EXPECT_EQ(sizeof(ushort), img.elemSize());
|
|
|
|
EXPECT_EQ(1, img.channels());
|
|
|
|
EXPECT_EQ(0xDEAD, img.at<ushort>(0,0));
|
|
|
|
EXPECT_EQ(0xBEEF, img.at<ushort>(0,1));
|
|
|
|
|
|
|
|
remove(filename.c_str());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
class CV_GrfmtReadTifTiledWithNotFullTiles: public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
void run(int)
|
|
|
|
{
|
|
|
|
try
|
|
|
|
{
|
|
|
|
/* see issue #3472 - dealing with tiled images where the tile size is
|
|
|
|
* not a multiple of image size.
|
|
|
|
* The tiled images were created with 'convert' from ImageMagick,
|
|
|
|
* using the command 'convert <input> -define tiff:tile-geometry=128x128 -depth [8|16] <output>
|
|
|
|
* Note that the conversion to 16 bits expands the range from 0-255 to 0-255*255,
|
|
|
|
* so the test converts back but rounding errors cause small differences.
|
|
|
|
*/
|
|
|
|
cv::Mat img = imread(string(ts->get_data_path()) + "readwrite/non_tiled.tif",-1);
|
|
|
|
if (img.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
|
|
|
ASSERT_TRUE(img.channels() == 3);
|
|
|
|
cv::Mat tiled8 = imread(string(ts->get_data_path()) + "readwrite/tiled_8.tif", -1);
|
|
|
|
if (tiled8.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
|
|
|
ASSERT_PRED_FORMAT2(cvtest::MatComparator(0, 0), img, tiled8);
|
|
|
|
|
|
|
|
cv::Mat tiled16 = imread(string(ts->get_data_path()) + "readwrite/tiled_16.tif", -1);
|
|
|
|
if (tiled16.empty()) ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
|
|
|
ASSERT_TRUE(tiled16.elemSize() == 6);
|
|
|
|
tiled16.convertTo(tiled8, CV_8UC3, 1./256.);
|
|
|
|
ASSERT_PRED_FORMAT2(cvtest::MatComparator(2, 0), img, tiled8);
|
|
|
|
// What about 32, 64 bit?
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
|
|
|
|
}
|
|
|
|
ts->set_failed_test_info(cvtest::TS::OK);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Tiff, decode_tile_remainder)
|
|
|
|
{
|
|
|
|
CV_GrfmtReadTifTiledWithNotFullTiles test; test.safe_run();
|
|
|
|
}
|
|
|
|
|
|
|
|
class CV_GrfmtReadTifMultiPage : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
private:
|
|
|
|
void compare(int flags)
|
|
|
|
{
|
|
|
|
const string folder = string(cvtest::TS::ptr()->get_data_path()) + "/readwrite/";
|
|
|
|
const int page_count = 6;
|
|
|
|
|
|
|
|
vector<Mat> pages;
|
|
|
|
bool res = imreadmulti(folder + "multipage.tif", pages, flags);
|
|
|
|
ASSERT_TRUE(res == true);
|
|
|
|
ASSERT_EQ(static_cast<size_t>(page_count), pages.size());
|
|
|
|
|
|
|
|
for (int i = 0; i < page_count; i++)
|
|
|
|
{
|
|
|
|
char buffer[256];
|
|
|
|
sprintf(buffer, "%smultipage_p%d.tif", folder.c_str(), i + 1);
|
|
|
|
const string filepath(buffer);
|
|
|
|
const Mat page = imread(filepath, flags);
|
|
|
|
ASSERT_TRUE(mats_equal(page, pages[i]));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
public:
|
|
|
|
void run(int)
|
|
|
|
{
|
|
|
|
compare(IMREAD_UNCHANGED);
|
|
|
|
compare(IMREAD_GRAYSCALE);
|
|
|
|
compare(IMREAD_COLOR);
|
|
|
|
compare(IMREAD_ANYDEPTH);
|
|
|
|
compare(IMREAD_ANYCOLOR);
|
|
|
|
// compare(IMREAD_LOAD_GDAL); // GDAL does not support multi-page TIFFs
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Tiff, decode_multipage)
|
|
|
|
{
|
|
|
|
CV_GrfmtReadTifMultiPage test; test.safe_run();
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef HAVE_WEBP
|
|
|
|
|
|
|
|
TEST(Imgcodecs_WebP, encode_decode_lossless_webp)
|
|
|
|
{
|
|
|
|
cvtest::TS& ts = *cvtest::TS::ptr();
|
|
|
|
string input = string(ts.get_data_path()) + "../cv/shared/lena.png";
|
|
|
|
cv::Mat img = cv::imread(input);
|
|
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
|
|
|
|
string output = cv::tempfile(".webp");
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(output, img)); // lossless
|
|
|
|
|
|
|
|
cv::Mat img_webp = cv::imread(output);
|
|
|
|
|
|
|
|
std::vector<unsigned char> buf;
|
|
|
|
|
|
|
|
FILE * wfile = NULL;
|
|
|
|
|
|
|
|
wfile = fopen(output.c_str(), "rb");
|
|
|
|
if (wfile != NULL)
|
|
|
|
{
|
|
|
|
fseek(wfile, 0, SEEK_END);
|
|
|
|
size_t wfile_size = ftell(wfile);
|
|
|
|
fseek(wfile, 0, SEEK_SET);
|
|
|
|
|
|
|
|
buf.resize(wfile_size);
|
|
|
|
|
|
|
|
size_t data_size = fread(&buf[0], 1, wfile_size, wfile);
|
|
|
|
|
|
|
|
if(wfile)
|
|
|
|
{
|
|
|
|
fclose(wfile);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (data_size != wfile_size)
|
|
|
|
{
|
|
|
|
EXPECT_TRUE(false);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
remove(output.c_str());
|
|
|
|
|
|
|
|
cv::Mat decode = cv::imdecode(buf, IMREAD_COLOR);
|
|
|
|
ASSERT_FALSE(decode.empty());
|
|
|
|
EXPECT_TRUE(cvtest::norm(decode, img_webp, NORM_INF) == 0);
|
|
|
|
|
|
|
|
ASSERT_FALSE(img_webp.empty());
|
|
|
|
|
|
|
|
EXPECT_TRUE(cvtest::norm(img, img_webp, NORM_INF) == 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgcodecs_WebP, encode_decode_lossy_webp)
|
|
|
|
{
|
|
|
|
cvtest::TS& ts = *cvtest::TS::ptr();
|
|
|
|
std::string input = std::string(ts.get_data_path()) + "../cv/shared/lena.png";
|
|
|
|
cv::Mat img = cv::imread(input);
|
|
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
|
|
|
|
for(int q = 100; q>=0; q-=20)
|
|
|
|
{
|
|
|
|
std::vector<int> params;
|
|
|
|
params.push_back(IMWRITE_WEBP_QUALITY);
|
|
|
|
params.push_back(q);
|
|
|
|
string output = cv::tempfile(".webp");
|
|
|
|
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(output, img, params));
|
|
|
|
cv::Mat img_webp = cv::imread(output);
|
|
|
|
remove(output.c_str());
|
|
|
|
EXPECT_FALSE(img_webp.empty());
|
|
|
|
EXPECT_EQ(3, img_webp.channels());
|
|
|
|
EXPECT_EQ(512, img_webp.cols);
|
|
|
|
EXPECT_EQ(512, img_webp.rows);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(Imgcodecs_WebP, encode_decode_with_alpha_webp)
|
|
|
|
{
|
|
|
|
cvtest::TS& ts = *cvtest::TS::ptr();
|
|
|
|
std::string input = std::string(ts.get_data_path()) + "../cv/shared/lena.png";
|
|
|
|
cv::Mat img = cv::imread(input);
|
|
|
|
ASSERT_FALSE(img.empty());
|
|
|
|
|
|
|
|
std::vector<cv::Mat> imgs;
|
|
|
|
cv::split(img, imgs);
|
|
|
|
imgs.push_back(cv::Mat(imgs[0]));
|
|
|
|
imgs[imgs.size() - 1] = cv::Scalar::all(128);
|
|
|
|
cv::merge(imgs, img);
|
|
|
|
|
|
|
|
string output = cv::tempfile(".webp");
|
|
|
|
|
|
|
|
EXPECT_NO_THROW(cv::imwrite(output, img));
|
|
|
|
cv::Mat img_webp = cv::imread(output);
|
|
|
|
remove(output.c_str());
|
|
|
|
EXPECT_FALSE(img_webp.empty());
|
|
|
|
EXPECT_EQ(4, img_webp.channels());
|
|
|
|
EXPECT_EQ(512, img_webp.cols);
|
|
|
|
EXPECT_EQ(512, img_webp.rows);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
TEST(Imgcodecs_Hdr, regression)
|
|
|
|
{
|
|
|
|
string folder = string(cvtest::TS::ptr()->get_data_path()) + "/readwrite/";
|
|
|
|
string name_rle = folder + "rle.hdr";
|
|
|
|
string name_no_rle = folder + "no_rle.hdr";
|
|
|
|
Mat img_rle = imread(name_rle, -1);
|
|
|
|
ASSERT_FALSE(img_rle.empty()) << "Could not open " << name_rle;
|
|
|
|
Mat img_no_rle = imread(name_no_rle, -1);
|
|
|
|
ASSERT_FALSE(img_no_rle.empty()) << "Could not open " << name_no_rle;
|
|
|
|
|
|
|
|
double min = 0.0, max = 1.0;
|
|
|
|
minMaxLoc(abs(img_rle - img_no_rle), &min, &max);
|
|
|
|
ASSERT_FALSE(max > DBL_EPSILON);
|
|
|
|
string tmp_file_name = tempfile(".hdr");
|
|
|
|
vector<int>param(1);
|
|
|
|
for(int i = 0; i < 2; i++) {
|
|
|
|
param[0] = i;
|
|
|
|
imwrite(tmp_file_name, img_rle, param);
|
|
|
|
Mat written_img = imread(tmp_file_name, -1);
|
|
|
|
ASSERT_FALSE(written_img.empty()) << "Could not open " << tmp_file_name;
|
|
|
|
minMaxLoc(abs(img_rle - written_img), &min, &max);
|
|
|
|
ASSERT_FALSE(max > DBL_EPSILON);
|
|
|
|
}
|
|
|
|
}
|