//============================================================================
// Name : HighDynamicRange_RetinaCompression.cpp
// Author : Alexandre Benoit (benoit.alexandre.vision@gmail.com)
// Version : 0.1
// Copyright : Alexandre Benoit, LISTIC Lab, july 2011
// Description : HighDynamicRange compression (tone mapping) with the help of the Gipsa/Listic's retina in C++, Ansi-style
//============================================================================
# include <iostream>
# include <cstring>
# include "opencv2/opencv.hpp"
void help ( std : : string errorMessage )
{
std : : cout < < " Program init error : " < < errorMessage < < std : : endl ;
std : : cout < < " \n Program call procedure : ./OpenEXRimages_HighDynamicRange_Retina_toneMapping [OpenEXR image to process] " < < std : : endl ;
std : : cout < < " \t [OpenEXR image to process] : the input HDR image to process, must be an OpenEXR format, see http://www.openexr.com/ to get some samples or create your own using camera bracketing and Photoshop or equivalent software for OpenEXR image synthesis " < < std : : endl ;
std : : cout < < " \n Examples: " < < std : : endl ;
std : : cout < < " \t -Image processing : ./OpenEXRimages_HighDynamicRange_Retina_toneMapping memorial.exr " < < std : : endl ;
}
// simple procedure for 1D curve tracing
void drawPlot ( const cv : : Mat curve , const std : : string figureTitle , const int lowerLimit , const int upperLimit )
{
//std::cout<<"curve size(h,w) = "<<curve.size().height<<", "<<curve.size().width<<std::endl;
cv : : Mat displayedCurveImage = cv : : Mat : : ones ( 200 , curve . size ( ) . height , CV_8U ) ;
cv : : Mat windowNormalizedCurve ;
normalize ( curve , windowNormalizedCurve , 0 , 200 , CV_MINMAX , CV_32F ) ;
displayedCurveImage = cv : : Scalar : : all ( 255 ) ; // set a white background
int binW = cvRound ( ( double ) displayedCurveImage . cols / curve . size ( ) . height ) ;
for ( int i = 0 ; i < curve . size ( ) . height ; i + + )
rectangle ( displayedCurveImage , cv : : Point ( i * binW , displayedCurveImage . rows ) ,
cv : : Point ( ( i + 1 ) * binW , displayedCurveImage . rows - cvRound ( windowNormalizedCurve . at < float > ( i ) ) ) ,
cv : : Scalar : : all ( 0 ) , - 1 , 8 , 0 ) ;
rectangle ( displayedCurveImage , cv : : Point ( 0 , 0 ) ,
cv : : Point ( ( lowerLimit ) * binW , 200 ) ,
cv : : Scalar : : all ( 128 ) , - 1 , 8 , 0 ) ;
rectangle ( displayedCurveImage , cv : : Point ( displayedCurveImage . cols , 0 ) ,
cv : : Point ( ( upperLimit ) * binW , 200 ) ,
cv : : Scalar : : all ( 128 ) , - 1 , 8 , 0 ) ;
cv : : imshow ( figureTitle , displayedCurveImage ) ;
}
/*
* objective : get the gray level map of the input image and rescale it to the range [ 0 - 255 ]
*/ void rescaleGrayLevelMat ( const cv : : Mat & inputMat , cv : : Mat & outputMat , const float histogramClippingLimit )
{
// adjust output matrix wrt the input size but single channel
std : : cout < < " Input image rescaling with histogram edges cutting (in order to eliminate bad pixels created during the HDR image creation) : " < < std : : endl ;
//std::cout<<"=> image size (h,w,channels) = "<<inputMat.size().height<<", "<<inputMat.size().width<<", "<<inputMat.channels()<<std::endl;
//std::cout<<"=> pixel coding (nbchannel, bytes per channel) = "<<inputMat.elemSize()/inputMat.elemSize1()<<", "<<inputMat.elemSize1()<<std::endl;
// rescale between 0-255, keeping floating point values
cv : : normalize ( inputMat , outputMat , 0.0 , 255.0 , cv : : NORM_MINMAX ) ;
// extract a 8bit image that will be used for histogram edge cut
cv : : Mat intGrayImage ;
if ( inputMat . channels ( ) = = 1 )
{
outputMat . convertTo ( intGrayImage , CV_8U ) ;
} else
{
cv : : Mat rgbIntImg ;
outputMat . convertTo ( rgbIntImg , CV_8UC3 ) ;
cvtColor ( rgbIntImg , intGrayImage , CV_BGR2GRAY ) ;
}
// get histogram density probability in order to cut values under above edges limits (here 5-95%)... usefull for HDR pixel errors cancellation
cv : : Mat dst , hist ;
int histSize = 256 ;
calcHist ( & intGrayImage , 1 , 0 , cv : : Mat ( ) , hist , 1 , & histSize , 0 ) ;
cv : : Mat normalizedHist ;
normalize ( hist , normalizedHist , 1 , 0 , cv : : NORM_L1 , CV_32F ) ; // normalize histogram so that its sum equals 1
double min_val , max_val ;
CvMat histArr ( normalizedHist ) ;
cvMinMaxLoc ( & histArr , & min_val , & max_val ) ;
//std::cout<<"Hist max,min = "<<max_val<<", "<<min_val<<std::endl;
// compute density probability
cv : : Mat denseProb = cv : : Mat : : zeros ( normalizedHist . size ( ) , CV_32F ) ;
denseProb . at < float > ( 0 ) = normalizedHist . at < float > ( 0 ) ;
int histLowerLimit = 0 , histUpperLimit = 0 ;
for ( int i = 1 ; i < normalizedHist . size ( ) . height ; + + i )
{
denseProb . at < float > ( i ) = denseProb . at < float > ( i - 1 ) + normalizedHist . at < float > ( i ) ;
//std::cout<<normalizedHist.at<float>(i)<<", "<<denseProb.at<float>(i)<<std::endl;
if ( denseProb . at < float > ( i ) < histogramClippingLimit )
histLowerLimit = i ;
if ( denseProb . at < float > ( i ) < 1 - histogramClippingLimit )
histUpperLimit = i ;
}
// deduce min and max admitted gray levels
float minInputValue = ( float ) histLowerLimit / histSize * 255 ;
float maxInputValue = ( float ) histUpperLimit / histSize * 255 ;
std : : cout < < " => Histogram limits "
< < " \n \t " < < histogramClippingLimit * 100 < < " % index = " < < histLowerLimit < < " => normalizedHist value = " < < denseProb . at < float > ( histLowerLimit ) < < " => input gray level = " < < minInputValue
< < " \n \t " < < ( 1 - histogramClippingLimit ) * 100 < < " % index = " < < histUpperLimit < < " => normalizedHist value = " < < denseProb . at < float > ( histUpperLimit ) < < " => input gray level = " < < maxInputValue
< < std : : endl ;
//drawPlot(denseProb, "input histogram density probability", histLowerLimit, histUpperLimit);
drawPlot ( normalizedHist , " input histogram " , histLowerLimit , histUpperLimit ) ;
// rescale image range [minInputValue-maxInputValue] to [0-255]
outputMat - = minInputValue ;
outputMat * = 255.0 / ( maxInputValue - minInputValue ) ;
// cut original histogram and back project to original image
cv : : threshold ( outputMat , outputMat , 255.0 , 255.0 , 2 ) ; //THRESH_TRUNC, clips values above 255
cv : : threshold ( outputMat , outputMat , 0.0 , 0.0 , 3 ) ; //THRESH_TOZERO, clips values under 0
}
// basic callback method for interface management
cv : : Mat inputImage ;
cv : : Mat imageInputRescaled ;
int histogramClippingValue ;
void callBack_rescaleGrayLevelMat ( int , void * )
{
std : : cout < < " Histogram clipping value changed, current value = " < < histogramClippingValue < < std : : endl ;
rescaleGrayLevelMat ( inputImage , imageInputRescaled , ( float ) histogramClippingValue / 100.0 ) ;
normalize ( imageInputRescaled , imageInputRescaled , 0.0 , 255.0 , cv : : NORM_MINMAX ) ;
}
cv : : Ptr < cv : : Retina > retina ;
int retinaHcellsGain ;
int localAdaptation_photoreceptors , localAdaptation_Gcells ;
void callBack_updateRetinaParams ( int , void * )
{
retina - > setupOPLandIPLParvoChannel ( true , true , ( double ) localAdaptation_photoreceptors / 200.0 , 0.5 , 0.43 , ( double ) retinaHcellsGain , 1.0 , 7.0 , ( double ) localAdaptation_Gcells / 200.0 ) ;
}
int colorSaturationFactor ;
void callback_saturateColors ( int , void * )
{
retina - > setColorSaturation ( ( double ) colorSaturationFactor / 10.0 ) ;
}
int main ( int argc , char * argv [ ] ) {
// welcome message
std : : cout < < " ********************************************************************************* " < < std : : endl ;
std : : cout < < " * Retina demonstration for High Dynamic Range compression (tone-mapping) : demonstrates the use of a wrapper class of the Gipsa/Listic Labs retina model. " < < std : : endl ;
std : : cout < < " * This retina model allows spatio-temporal image processing (applied on still images, video sequences). " < < std : : endl ;
std : : cout < < " * This demo focuses demonstration of the dynamic compression capabilities of the model " < < std : : endl ;
std : : cout < < " * => the main application is tone mapping of HDR images (i.e. see on a 8bit display a more than 8bits coded (up to 16bits) image with details in high and low luminance ranges " < < std : : endl ;
std : : cout < < " * The retina model still have the following properties: " < < std : : endl ;
std : : cout < < " * => It applies a spectral whithening (mid-frequency details enhancement) " < < std : : endl ;
std : : cout < < " * => high frequency spatio-temporal noise reduction " < < std : : endl ;
std : : cout < < " * => low frequency luminance to be reduced (luminance range compression) " < < std : : endl ;
std : : cout < < " * => local logarithmic luminance compression allows details to be enhanced in low light conditions \n " < < std : : endl ;
std : : cout < < " * for more information, reer to the following papers : " < < std : : endl ;
std : : cout < < " * Benoit A., Caplier A., Durette B., Herault, J., \" USING HUMAN VISUAL SYSTEM MODELING FOR BIO-INSPIRED LOW LEVEL IMAGE PROCESSING \" , Elsevier, Computer Vision and Image Understanding 114 (2010), pp. 758-773, DOI: http://dx.doi.org/10.1016/j.cviu.2010.01.011 " < < std : : endl ;
std : : cout < < " * Vision: Images, Signals and Neural Networks: Models of Neural Processing in Visual Perception (Progress in Neural Processing),By: Jeanny Herault, ISBN: 9814273686. WAPI (Tower ID): 113266891. " < < std : : endl ;
std : : cout < < " * => reports comments/remarks at benoit.alexandre.vision@gmail.com " < < std : : endl ;
std : : cout < < " * => more informations and papers at : http://sites.google.com/site/benoitalexandrevision/ " < < std : : endl ;
std : : cout < < " ********************************************************************************* " < < std : : endl ;
std : : cout < < " ** WARNING : this sample requires OpenCV to be configured with OpenEXR support ** " < < std : : endl ;
std : : cout < < " ********************************************************************************* " < < std : : endl ;
std : : cout < < " *** You can use free tools to generate OpenEXR images from images sets : *** " < < std : : endl ;
std : : cout < < " *** => 1. take a set of photos from the same viewpoint using bracketing *** " < < std : : endl ;
std : : cout < < " *** => 2. generate an OpenEXR image with tools like qtpfsgui.sourceforge.net *** " < < std : : endl ;
std : : cout < < " *** => 3. apply tone mapping with this program *** " < < std : : endl ;
std : : cout < < " ********************************************************************************* " < < std : : endl ;
// basic input arguments checking
if ( argc < 2 )
{
help ( " bad number of parameter " ) ;
return - 1 ;
}
bool useLogSampling = ! strcmp ( argv [ argc - 1 ] , " log " ) ; // check if user wants retina log sampling processing
std : : string inputImageName = argv [ 1 ] ;
//////////////////////////////////////////////////////////////////////////////
// checking input media type (still image, video file, live video acquisition)
std : : cout < < " RetinaDemo: processing image " < < inputImageName < < std : : endl ;
// image processing case
// declare the retina input buffer... that will be fed differently in regard of the input media
inputImage = cv : : imread ( inputImageName , - 1 ) ; // load image in RGB mode
std : : cout < < " => image size (h,w) = " < < inputImage . size ( ) . height < < " , " < < inputImage . size ( ) . width < < std : : endl ;
if ( ! inputImage . total ( ) )
{
help ( " could not load image, program end " ) ;
return - 1 ;
}
// rescale between 0 and 1
normalize ( inputImage , inputImage , 0.0 , 1.0 , cv : : NORM_MINMAX ) ;
cv : : Mat gammaTransformedImage ;
cv : : pow ( inputImage , 1. / 5 , gammaTransformedImage ) ; // apply gamma curve: img = img ** (1./5)
imshow ( " EXR image original image, 16bits=>8bits linear rescaling " , inputImage ) ;
imshow ( " EXR image with basic processing : 16bits=>8bits with gamma correction " , gammaTransformedImage ) ;
if ( inputImage . empty ( ) )
{
help ( " Input image could not be loaded, aborting " ) ;
return - 1 ;
}
//////////////////////////////////////////////////////////////////////////////
// Program start in a try/catch safety context (Retina may throw errors)
try
{
/* create a retina instance with default parameters setup, uncomment the initialisation you wanna test
* - > if the last parameter is ' log ' , then activate log sampling ( favour foveal vision and subsamples peripheral vision )
*/
if ( useLogSampling )
retina = new cv : : Retina ( " params.xml " , inputImage . size ( ) , true , cv : : RETINA_COLOR_BAYER , true , 2.0 , 10.0 ) ;
else // -> else allocate "classical" retina :
retina = new cv : : Retina ( " params.xml " , inputImage . size ( ) ) ;
// declare retina output buffers
cv : : Mat retinaOutput_parvo ;
cv : : Mat retinaOutput_magno ;
/////////////////////////////////////////////
// prepare displays and interactions
histogramClippingValue = 0 ; // default value... updated with interface slider
//inputRescaleMat = inputImage;
//outputRescaleMat = imageInputRescaled;
cv : : namedWindow ( " Retina input image (with cut edges histogram for basic pixels error avoidance) " , 1 ) ;
cv : : createTrackbar ( " histogram edges clipping limit " , " Retina input image (with cut edges histogram for basic pixels error avoidance) " , & histogramClippingValue , 50 , callBack_rescaleGrayLevelMat ) ;
cv : : namedWindow ( " Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping " , 1 ) ;
colorSaturationFactor = 3 ;
cv : : createTrackbar ( " Color saturation " , " Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping " , & colorSaturationFactor , 5 , callback_saturateColors ) ;
retinaHcellsGain = 40 ;
cv : : createTrackbar ( " Hcells gain " , " Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping " , & retinaHcellsGain , 100 , callBack_updateRetinaParams ) ;
localAdaptation_photoreceptors = 197 ;
localAdaptation_Gcells = 190 ;
cv : : createTrackbar ( " Ph sensitivity " , " Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping " , & localAdaptation_photoreceptors , 199 , callBack_updateRetinaParams ) ;
cv : : createTrackbar ( " Gcells sensitivity " , " Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping " , & localAdaptation_Gcells , 199 , callBack_updateRetinaParams ) ;
/////////////////////////////////////////////
// apply default parameters of user interaction variables
rescaleGrayLevelMat ( inputImage , imageInputRescaled , ( float ) histogramClippingValue / 100 ) ;
retina - > setColorSaturation ( true , colorSaturationFactor ) ;
callBack_updateRetinaParams ( 1 , NULL ) ; // first call for default parameters setup
// processing loop with stop condition
bool continueProcessing = true ;
while ( continueProcessing )
{
// run retina filter
retina - > run ( imageInputRescaled ) ;
// Retrieve and display retina output
retina - > getParvo ( retinaOutput_parvo ) ;
retina - > getMagno ( retinaOutput_magno ) ;
cv : : imshow ( " Retina input image (with cut edges histogram for basic pixels error avoidance) " , imageInputRescaled / 255.0 ) ;
cv : : imshow ( " Retina Parvocellular pathway output : 16bit=>8bit image retina tonemapping " , retinaOutput_parvo ) ;
//cv::imshow("Retina Magno", retinaOutput_magno); // not usefull in this demo, uncomment if needed
cv : : waitKey ( 10 ) ;
}
} catch ( cv : : Exception e )
{
std : : cerr < < " Error using Retina : " < < e . what ( ) < < std : : endl ;
}
// Program end message
std : : cout < < " Retina demo end " < < std : : endl ;
return 0 ;
}