mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
192 lines
4.6 KiB
192 lines
4.6 KiB
15 years ago
|
/* slarfp.f -- translated by f2c (version 20061008).
|
||
|
You must link the resulting object file with libf2c:
|
||
|
on Microsoft Windows system, link with libf2c.lib;
|
||
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
||
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
||
|
-- in that order, at the end of the command line, as in
|
||
|
cc *.o -lf2c -lm
|
||
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
||
|
|
||
|
http://www.netlib.org/f2c/libf2c.zip
|
||
|
*/
|
||
|
|
||
|
#include "clapack.h"
|
||
|
|
||
|
|
||
|
/* Subroutine */ int slarfp_(integer *n, real *alpha, real *x, integer *incx,
|
||
|
real *tau)
|
||
|
{
|
||
|
/* System generated locals */
|
||
|
integer i__1;
|
||
|
real r__1;
|
||
|
|
||
|
/* Builtin functions */
|
||
|
double r_sign(real *, real *);
|
||
|
|
||
|
/* Local variables */
|
||
|
integer j, knt;
|
||
|
real beta;
|
||
|
extern doublereal snrm2_(integer *, real *, integer *);
|
||
|
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
|
||
|
real xnorm;
|
||
|
extern doublereal slapy2_(real *, real *), slamch_(char *);
|
||
|
real safmin, rsafmn;
|
||
|
|
||
|
|
||
|
/* -- LAPACK auxiliary routine (version 3.2) -- */
|
||
|
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
|
||
|
/* November 2006 */
|
||
|
|
||
|
/* .. Scalar Arguments .. */
|
||
|
/* .. */
|
||
|
/* .. Array Arguments .. */
|
||
|
/* .. */
|
||
|
|
||
|
/* Purpose */
|
||
|
/* ======= */
|
||
|
|
||
|
/* SLARFP generates a real elementary reflector H of order n, such */
|
||
|
/* that */
|
||
|
|
||
|
/* H * ( alpha ) = ( beta ), H' * H = I. */
|
||
|
/* ( x ) ( 0 ) */
|
||
|
|
||
|
/* where alpha and beta are scalars, beta is non-negative, and x is */
|
||
|
/* an (n-1)-element real vector. H is represented in the form */
|
||
|
|
||
|
/* H = I - tau * ( 1 ) * ( 1 v' ) , */
|
||
|
/* ( v ) */
|
||
|
|
||
|
/* where tau is a real scalar and v is a real (n-1)-element */
|
||
|
/* vector. */
|
||
|
|
||
|
/* If the elements of x are all zero, then tau = 0 and H is taken to be */
|
||
|
/* the unit matrix. */
|
||
|
|
||
|
/* Otherwise 1 <= tau <= 2. */
|
||
|
|
||
|
/* Arguments */
|
||
|
/* ========= */
|
||
|
|
||
|
/* N (input) INTEGER */
|
||
|
/* The order of the elementary reflector. */
|
||
|
|
||
|
/* ALPHA (input/output) REAL */
|
||
|
/* On entry, the value alpha. */
|
||
|
/* On exit, it is overwritten with the value beta. */
|
||
|
|
||
|
/* X (input/output) REAL array, dimension */
|
||
|
/* (1+(N-2)*abs(INCX)) */
|
||
|
/* On entry, the vector x. */
|
||
|
/* On exit, it is overwritten with the vector v. */
|
||
|
|
||
|
/* INCX (input) INTEGER */
|
||
|
/* The increment between elements of X. INCX > 0. */
|
||
|
|
||
|
/* TAU (output) REAL */
|
||
|
/* The value tau. */
|
||
|
|
||
|
/* ===================================================================== */
|
||
|
|
||
|
/* .. Parameters .. */
|
||
|
/* .. */
|
||
|
/* .. Local Scalars .. */
|
||
|
/* .. */
|
||
|
/* .. External Functions .. */
|
||
|
/* .. */
|
||
|
/* .. Intrinsic Functions .. */
|
||
|
/* .. */
|
||
|
/* .. External Subroutines .. */
|
||
|
/* .. */
|
||
|
/* .. Executable Statements .. */
|
||
|
|
||
|
/* Parameter adjustments */
|
||
|
--x;
|
||
|
|
||
|
/* Function Body */
|
||
|
if (*n <= 0) {
|
||
|
*tau = 0.f;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
i__1 = *n - 1;
|
||
|
xnorm = snrm2_(&i__1, &x[1], incx);
|
||
|
|
||
|
if (xnorm == 0.f) {
|
||
|
|
||
|
/* H = [+/-1, 0; I], sign chosen so ALPHA >= 0. */
|
||
|
|
||
|
if (*alpha >= 0.f) {
|
||
|
/* When TAU.eq.ZERO, the vector is special-cased to be */
|
||
|
/* all zeros in the application routines. We do not need */
|
||
|
/* to clear it. */
|
||
|
*tau = 0.f;
|
||
|
} else {
|
||
|
/* However, the application routines rely on explicit */
|
||
|
/* zero checks when TAU.ne.ZERO, and we must clear X. */
|
||
|
*tau = 2.f;
|
||
|
i__1 = *n - 1;
|
||
|
for (j = 1; j <= i__1; ++j) {
|
||
|
x[(j - 1) * *incx + 1] = 0.f;
|
||
|
}
|
||
|
*alpha = -(*alpha);
|
||
|
}
|
||
|
} else {
|
||
|
|
||
|
/* general case */
|
||
|
|
||
|
r__1 = slapy2_(alpha, &xnorm);
|
||
|
beta = r_sign(&r__1, alpha);
|
||
|
safmin = slamch_("S") / slamch_("E");
|
||
|
knt = 0;
|
||
|
if (dabs(beta) < safmin) {
|
||
|
|
||
|
/* XNORM, BETA may be inaccurate; scale X and recompute them */
|
||
|
|
||
|
rsafmn = 1.f / safmin;
|
||
|
L10:
|
||
|
++knt;
|
||
|
i__1 = *n - 1;
|
||
|
sscal_(&i__1, &rsafmn, &x[1], incx);
|
||
|
beta *= rsafmn;
|
||
|
*alpha *= rsafmn;
|
||
|
if (dabs(beta) < safmin) {
|
||
|
goto L10;
|
||
|
}
|
||
|
|
||
|
/* New BETA is at most 1, at least SAFMIN */
|
||
|
|
||
|
i__1 = *n - 1;
|
||
|
xnorm = snrm2_(&i__1, &x[1], incx);
|
||
|
r__1 = slapy2_(alpha, &xnorm);
|
||
|
beta = r_sign(&r__1, alpha);
|
||
|
}
|
||
|
*alpha += beta;
|
||
|
if (beta < 0.f) {
|
||
|
beta = -beta;
|
||
|
*tau = -(*alpha) / beta;
|
||
|
} else {
|
||
|
*alpha = xnorm * (xnorm / *alpha);
|
||
|
*tau = *alpha / beta;
|
||
|
*alpha = -(*alpha);
|
||
|
}
|
||
|
i__1 = *n - 1;
|
||
|
r__1 = 1.f / *alpha;
|
||
|
sscal_(&i__1, &r__1, &x[1], incx);
|
||
|
|
||
|
/* If BETA is subnormal, it may lose relative accuracy */
|
||
|
|
||
|
i__1 = knt;
|
||
|
for (j = 1; j <= i__1; ++j) {
|
||
|
beta *= safmin;
|
||
|
/* L20: */
|
||
|
}
|
||
|
*alpha = beta;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
/* End of SLARFP */
|
||
|
|
||
|
} /* slarfp_ */
|