|
|
|
/* dgemm.f -- translated by f2c (version 20061008).
|
|
|
|
You must link the resulting object file with libf2c:
|
|
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
|
|
-- in that order, at the end of the command line, as in
|
|
|
|
cc *.o -lf2c -lm
|
|
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "clapack.h"
|
|
|
|
|
|
|
|
|
|
|
|
/* Subroutine */ int dgemm_(char *transa, char *transb, integer *m, integer *
|
|
|
|
n, integer *k, doublereal *alpha, doublereal *a, integer *lda,
|
|
|
|
doublereal *b, integer *ldb, doublereal *beta, doublereal *c__,
|
|
|
|
integer *ldc)
|
|
|
|
{
|
|
|
|
/* System generated locals */
|
|
|
|
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
|
|
|
|
i__3;
|
|
|
|
|
|
|
|
/* Local variables */
|
|
|
|
integer i__, j, l, info;
|
|
|
|
logical nota, notb;
|
|
|
|
doublereal temp;
|
|
|
|
integer ncola;
|
|
|
|
extern logical lsame_(char *, char *);
|
|
|
|
integer nrowa, nrowb;
|
|
|
|
extern /* Subroutine */ int xerbla_(char *, integer *);
|
|
|
|
|
|
|
|
/* .. Scalar Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Array Arguments .. */
|
|
|
|
/* .. */
|
|
|
|
|
|
|
|
/* Purpose */
|
|
|
|
/* ======= */
|
|
|
|
|
|
|
|
/* DGEMM performs one of the matrix-matrix operations */
|
|
|
|
|
|
|
|
/* C := alpha*op( A )*op( B ) + beta*C, */
|
|
|
|
|
|
|
|
/* where op( X ) is one of */
|
|
|
|
|
|
|
|
/* op( X ) = X or op( X ) = X', */
|
|
|
|
|
|
|
|
/* alpha and beta are scalars, and A, B and C are matrices, with op( A ) */
|
|
|
|
/* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. */
|
|
|
|
|
|
|
|
/* Arguments */
|
|
|
|
/* ========== */
|
|
|
|
|
|
|
|
/* TRANSA - CHARACTER*1. */
|
|
|
|
/* On entry, TRANSA specifies the form of op( A ) to be used in */
|
|
|
|
/* the matrix multiplication as follows: */
|
|
|
|
|
|
|
|
/* TRANSA = 'N' or 'n', op( A ) = A. */
|
|
|
|
|
|
|
|
/* TRANSA = 'T' or 't', op( A ) = A'. */
|
|
|
|
|
|
|
|
/* TRANSA = 'C' or 'c', op( A ) = A'. */
|
|
|
|
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
|
|
|
|
/* TRANSB - CHARACTER*1. */
|
|
|
|
/* On entry, TRANSB specifies the form of op( B ) to be used in */
|
|
|
|
/* the matrix multiplication as follows: */
|
|
|
|
|
|
|
|
/* TRANSB = 'N' or 'n', op( B ) = B. */
|
|
|
|
|
|
|
|
/* TRANSB = 'T' or 't', op( B ) = B'. */
|
|
|
|
|
|
|
|
/* TRANSB = 'C' or 'c', op( B ) = B'. */
|
|
|
|
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
|
|
|
|
/* M - INTEGER. */
|
|
|
|
/* On entry, M specifies the number of rows of the matrix */
|
|
|
|
/* op( A ) and of the matrix C. M must be at least zero. */
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
|
|
|
|
/* N - INTEGER. */
|
|
|
|
/* On entry, N specifies the number of columns of the matrix */
|
|
|
|
/* op( B ) and the number of columns of the matrix C. N must be */
|
|
|
|
/* at least zero. */
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
|
|
|
|
/* K - INTEGER. */
|
|
|
|
/* On entry, K specifies the number of columns of the matrix */
|
|
|
|
/* op( A ) and the number of rows of the matrix op( B ). K must */
|
|
|
|
/* be at least zero. */
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
|
|
|
|
/* ALPHA - DOUBLE PRECISION. */
|
|
|
|
/* On entry, ALPHA specifies the scalar alpha. */
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
|
|
|
|
/* A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is */
|
|
|
|
/* k when TRANSA = 'N' or 'n', and is m otherwise. */
|
|
|
|
/* Before entry with TRANSA = 'N' or 'n', the leading m by k */
|
|
|
|
/* part of the array A must contain the matrix A, otherwise */
|
|
|
|
/* the leading k by m part of the array A must contain the */
|
|
|
|
/* matrix A. */
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
|
|
|
|
/* LDA - INTEGER. */
|
|
|
|
/* On entry, LDA specifies the first dimension of A as declared */
|
|
|
|
/* in the calling (sub) program. When TRANSA = 'N' or 'n' then */
|
|
|
|
/* LDA must be at least max( 1, m ), otherwise LDA must be at */
|
|
|
|
/* least max( 1, k ). */
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
|
|
|
|
/* B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is */
|
|
|
|
/* n when TRANSB = 'N' or 'n', and is k otherwise. */
|
|
|
|
/* Before entry with TRANSB = 'N' or 'n', the leading k by n */
|
|
|
|
/* part of the array B must contain the matrix B, otherwise */
|
|
|
|
/* the leading n by k part of the array B must contain the */
|
|
|
|
/* matrix B. */
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
|
|
|
|
/* LDB - INTEGER. */
|
|
|
|
/* On entry, LDB specifies the first dimension of B as declared */
|
|
|
|
/* in the calling (sub) program. When TRANSB = 'N' or 'n' then */
|
|
|
|
/* LDB must be at least max( 1, k ), otherwise LDB must be at */
|
|
|
|
/* least max( 1, n ). */
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
|
|
|
|
/* BETA - DOUBLE PRECISION. */
|
|
|
|
/* On entry, BETA specifies the scalar beta. When BETA is */
|
|
|
|
/* supplied as zero then C need not be set on input. */
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
|
|
|
|
/* C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). */
|
|
|
|
/* Before entry, the leading m by n part of the array C must */
|
|
|
|
/* contain the matrix C, except when beta is zero, in which */
|
|
|
|
/* case C need not be set on entry. */
|
|
|
|
/* On exit, the array C is overwritten by the m by n matrix */
|
|
|
|
/* ( alpha*op( A )*op( B ) + beta*C ). */
|
|
|
|
|
|
|
|
/* LDC - INTEGER. */
|
|
|
|
/* On entry, LDC specifies the first dimension of C as declared */
|
|
|
|
/* in the calling (sub) program. LDC must be at least */
|
|
|
|
/* max( 1, m ). */
|
|
|
|
/* Unchanged on exit. */
|
|
|
|
|
|
|
|
|
|
|
|
/* Level 3 Blas routine. */
|
|
|
|
|
|
|
|
/* -- Written on 8-February-1989. */
|
|
|
|
/* Jack Dongarra, Argonne National Laboratory. */
|
|
|
|
/* Iain Duff, AERE Harwell. */
|
|
|
|
/* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
|
|
|
|
/* Sven Hammarling, Numerical Algorithms Group Ltd. */
|
|
|
|
|
|
|
|
|
|
|
|
/* .. External Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. External Subroutines .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Intrinsic Functions .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Local Scalars .. */
|
|
|
|
/* .. */
|
|
|
|
/* .. Parameters .. */
|
|
|
|
/* .. */
|
|
|
|
|
|
|
|
/* Set NOTA and NOTB as true if A and B respectively are not */
|
|
|
|
/* transposed and set NROWA, NCOLA and NROWB as the number of rows */
|
|
|
|
/* and columns of A and the number of rows of B respectively. */
|
|
|
|
|
|
|
|
/* Parameter adjustments */
|
|
|
|
a_dim1 = *lda;
|
|
|
|
a_offset = 1 + a_dim1;
|
|
|
|
a -= a_offset;
|
|
|
|
b_dim1 = *ldb;
|
|
|
|
b_offset = 1 + b_dim1;
|
|
|
|
b -= b_offset;
|
|
|
|
c_dim1 = *ldc;
|
|
|
|
c_offset = 1 + c_dim1;
|
|
|
|
c__ -= c_offset;
|
|
|
|
|
|
|
|
/* Function Body */
|
|
|
|
nota = lsame_(transa, "N");
|
|
|
|
notb = lsame_(transb, "N");
|
|
|
|
if (nota) {
|
|
|
|
nrowa = *m;
|
|
|
|
ncola = *k;
|
|
|
|
} else {
|
|
|
|
nrowa = *k;
|
|
|
|
ncola = *m;
|
|
|
|
}
|
|
|
|
if (notb) {
|
|
|
|
nrowb = *k;
|
|
|
|
} else {
|
|
|
|
nrowb = *n;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Test the input parameters. */
|
|
|
|
|
|
|
|
info = 0;
|
|
|
|
if (! nota && ! lsame_(transa, "C") && ! lsame_(
|
|
|
|
transa, "T")) {
|
|
|
|
info = 1;
|
|
|
|
} else if (! notb && ! lsame_(transb, "C") && !
|
|
|
|
lsame_(transb, "T")) {
|
|
|
|
info = 2;
|
|
|
|
} else if (*m < 0) {
|
|
|
|
info = 3;
|
|
|
|
} else if (*n < 0) {
|
|
|
|
info = 4;
|
|
|
|
} else if (*k < 0) {
|
|
|
|
info = 5;
|
|
|
|
} else if (*lda < max(1,nrowa)) {
|
|
|
|
info = 8;
|
|
|
|
} else if (*ldb < max(1,nrowb)) {
|
|
|
|
info = 10;
|
|
|
|
} else if (*ldc < max(1,*m)) {
|
|
|
|
info = 13;
|
|
|
|
}
|
|
|
|
if (info != 0) {
|
|
|
|
xerbla_("DGEMM ", &info);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Quick return if possible. */
|
|
|
|
|
|
|
|
if (*m == 0 || *n == 0 || (*alpha == 0. || *k == 0) && *beta == 1.) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* And if alpha.eq.zero. */
|
|
|
|
|
|
|
|
if (*alpha == 0.) {
|
|
|
|
if (*beta == 0.) {
|
|
|
|
i__1 = *n;
|
|
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
i__2 = *m;
|
|
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
|
|
c__[i__ + j * c_dim1] = 0.;
|
|
|
|
/* L10: */
|
|
|
|
}
|
|
|
|
/* L20: */
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
i__1 = *n;
|
|
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
i__2 = *m;
|
|
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
|
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
|
|
|
|
/* L30: */
|
|
|
|
}
|
|
|
|
/* L40: */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Start the operations. */
|
|
|
|
|
|
|
|
if (notb) {
|
|
|
|
if (nota) {
|
|
|
|
|
|
|
|
/* Form C := alpha*A*B + beta*C. */
|
|
|
|
|
|
|
|
i__1 = *n;
|
|
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
if (*beta == 0.) {
|
|
|
|
i__2 = *m;
|
|
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
|
|
c__[i__ + j * c_dim1] = 0.;
|
|
|
|
/* L50: */
|
|
|
|
}
|
|
|
|
} else if (*beta != 1.) {
|
|
|
|
i__2 = *m;
|
|
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
|
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
|
|
|
|
/* L60: */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
i__2 = *k;
|
|
|
|
for (l = 1; l <= i__2; ++l) {
|
|
|
|
if (b[l + j * b_dim1] != 0.) {
|
|
|
|
temp = *alpha * b[l + j * b_dim1];
|
|
|
|
i__3 = *m;
|
|
|
|
for (i__ = 1; i__ <= i__3; ++i__) {
|
|
|
|
c__[i__ + j * c_dim1] += temp * a[i__ + l *
|
|
|
|
a_dim1];
|
|
|
|
/* L70: */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* L80: */
|
|
|
|
}
|
|
|
|
/* L90: */
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
|
|
|
|
/* Form C := alpha*A'*B + beta*C */
|
|
|
|
|
|
|
|
i__1 = *n;
|
|
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
i__2 = *m;
|
|
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
|
|
temp = 0.;
|
|
|
|
i__3 = *k;
|
|
|
|
for (l = 1; l <= i__3; ++l) {
|
|
|
|
temp += a[l + i__ * a_dim1] * b[l + j * b_dim1];
|
|
|
|
/* L100: */
|
|
|
|
}
|
|
|
|
if (*beta == 0.) {
|
|
|
|
c__[i__ + j * c_dim1] = *alpha * temp;
|
|
|
|
} else {
|
|
|
|
c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
|
|
|
|
i__ + j * c_dim1];
|
|
|
|
}
|
|
|
|
/* L110: */
|
|
|
|
}
|
|
|
|
/* L120: */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (nota) {
|
|
|
|
|
|
|
|
/* Form C := alpha*A*B' + beta*C */
|
|
|
|
|
|
|
|
i__1 = *n;
|
|
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
if (*beta == 0.) {
|
|
|
|
i__2 = *m;
|
|
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
|
|
c__[i__ + j * c_dim1] = 0.;
|
|
|
|
/* L130: */
|
|
|
|
}
|
|
|
|
} else if (*beta != 1.) {
|
|
|
|
i__2 = *m;
|
|
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
|
|
c__[i__ + j * c_dim1] = *beta * c__[i__ + j * c_dim1];
|
|
|
|
/* L140: */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
i__2 = *k;
|
|
|
|
for (l = 1; l <= i__2; ++l) {
|
|
|
|
if (b[j + l * b_dim1] != 0.) {
|
|
|
|
temp = *alpha * b[j + l * b_dim1];
|
|
|
|
i__3 = *m;
|
|
|
|
for (i__ = 1; i__ <= i__3; ++i__) {
|
|
|
|
c__[i__ + j * c_dim1] += temp * a[i__ + l *
|
|
|
|
a_dim1];
|
|
|
|
/* L150: */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
/* L160: */
|
|
|
|
}
|
|
|
|
/* L170: */
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
|
|
|
|
/* Form C := alpha*A'*B' + beta*C */
|
|
|
|
|
|
|
|
i__1 = *n;
|
|
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
i__2 = *m;
|
|
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
|
|
temp = 0.;
|
|
|
|
i__3 = *k;
|
|
|
|
for (l = 1; l <= i__3; ++l) {
|
|
|
|
temp += a[l + i__ * a_dim1] * b[j + l * b_dim1];
|
|
|
|
/* L180: */
|
|
|
|
}
|
|
|
|
if (*beta == 0.) {
|
|
|
|
c__[i__ + j * c_dim1] = *alpha * temp;
|
|
|
|
} else {
|
|
|
|
c__[i__ + j * c_dim1] = *alpha * temp + *beta * c__[
|
|
|
|
i__ + j * c_dim1];
|
|
|
|
}
|
|
|
|
/* L190: */
|
|
|
|
}
|
|
|
|
/* L200: */
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
|
|
|
|
/* End of DGEMM . */
|
|
|
|
|
|
|
|
} /* dgemm_ */
|