Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

198 lines
9.1 KiB

#!/usr/bin/env python
class MatlabWrapperGenerator(object):
"""
MatlabWrapperGenerator is a class for generating Matlab mex sources from
a set of C++ headers. MatlabWrapperGenerator objects can be default
constructed. Given an instance, the gen() method performs the translation.
"""
def gen(self, module_root, modules, extras, output_dir):
"""
Generate a set of Matlab mex source files by parsing exported symbols
in a set of C++ headers. The headers can be input in one (or both) of
two methods:
1. specify module_root and modules
Given a path to the OpenCV module root and a list of module names,
the headers to parse are implicitly constructed.
2. specifiy header locations explicitly in extras
Each element in the list of extras must be of the form:
'namespace=/full/path/to/extra/header.hpp' where 'namespace' is
the namespace in which the definitions should be added.
The output_dir specifies the directory to write the generated sources
to.
"""
# parse each of the files and store in a dictionary
# as a separate "namespace"
parser = CppHeaderParser()
rst = rst_parser.RstParser(parser)
rst_parser.verbose = False
rst_parser.show_warnings = False
rst_parser.show_errors = False
rst_parser.show_critical_errors = False
ns = dict((key, []) for key in modules)
doc = dict((key, []) for key in modules)
path_template = Template('${module}/include/opencv2/${module}.hpp')
for module in modules:
# construct a header path from the module root and a path template
header = os.path.join(module_root, path_template.substitute(module=module))
# parse the definitions
ns[module] = parser.parse(header)
# parse the documentation
rst.parse(module, os.path.join(module_root, module))
doc[module] = rst.definitions
rst.definitions = {}
for extra in extras:
module = extra.split("=")[0]
header = extra.split("=")[1]
ns[module] = ns[module] + parser.parse(header) if module in ns else parser.parse(header)
# cleanify the parser output
parse_tree = ParseTree()
parse_tree.build(ns)
# setup the template engine
template_dir = os.path.join(os.path.dirname(__file__), 'templates')
jtemplate = Environment(loader=FileSystemLoader(template_dir), trim_blocks=True, lstrip_blocks=True)
# add the custom filters
jtemplate.filters['formatMatlabConstant'] = formatMatlabConstant
jtemplate.filters['convertibleToInt'] = convertibleToInt
jtemplate.filters['toUpperCamelCase'] = toUpperCamelCase
jtemplate.filters['toLowerCamelCase'] = toLowerCamelCase
jtemplate.filters['toUnderCase'] = toUnderCase
jtemplate.filters['matlabURL'] = matlabURL
jtemplate.filters['stripTags'] = stripTags
jtemplate.filters['filename'] = filename
jtemplate.filters['comment'] = comment
jtemplate.filters['inputs'] = inputs
jtemplate.filters['ninputs'] = ninputs
jtemplate.filters['outputs'] = outputs
jtemplate.filters['noutputs'] = noutputs
jtemplate.filters['qualify'] = qualify
jtemplate.filters['slugify'] = slugify
jtemplate.filters['only'] = only
jtemplate.filters['void'] = void
jtemplate.filters['not'] = flip
# load the templates
tfunction = jtemplate.get_template('template_function_base.cpp')
tclassm = jtemplate.get_template('template_class_base.m')
tclassc = jtemplate.get_template('template_class_base.cpp')
tdoc = jtemplate.get_template('template_doc_base.m')
tconst = jtemplate.get_template('template_map_base.m')
# create the build directory
output_source_dir = output_dir+'/src'
output_private_dir = output_source_dir+'/private'
output_class_dir = output_dir+'/+cv'
output_map_dir = output_dir+'/map'
if not os.path.isdir(output_source_dir):
os.mkdir(output_source_dir)
if not os.path.isdir(output_private_dir):
os.mkdir(output_private_dir)
if not os.path.isdir(output_class_dir):
os.mkdir(output_class_dir)
if not os.path.isdir(output_map_dir):
os.mkdir(output_map_dir)
# populate templates
for namespace in parse_tree.namespaces:
# functions
for method in namespace.methods:
populated = tfunction.render(fun=method, time=time, includes=namespace.name)
with open(output_source_dir+'/'+method.name+'.cpp', 'wb') as f:
f.write(populated.encode('utf-8'))
if namespace.name in doc and method.name in doc[namespace.name]:
populated = tdoc.render(fun=method, doc=doc[namespace.name][method.name], time=time)
with open(output_class_dir+'/'+method.name+'.m', 'wb') as f:
f.write(populated.encode('utf-8'))
# classes
for clss in namespace.classes:
# cpp converter
populated = tclassc.render(clss=clss, time=time)
with open(output_private_dir+'/'+clss.name+'Bridge.cpp', 'wb') as f:
f.write(populated.encode('utf-8'))
# matlab classdef
populated = tclassm.render(clss=clss, time=time)
with open(output_class_dir+'/'+clss.name+'.m', 'wb') as f:
f.write(populated.encode('utf-8'))
# create a global constants lookup table
const = dict(constants(todict(parse_tree.namespaces)))
populated = tconst.render(constants=const, time=time)
with open(output_dir+'/cv.m', 'wb') as f:
f.write(populated.encode('utf-8'))
if __name__ == "__main__":
"""
Usage: python gen_matlab.py --jinja2 /path/to/jinja2/engine
--hdrparser /path/to/hdr_parser/dir
--rstparser /path/to/rst_parser/dir
--moduleroot /path/to/opencv/modules
--modules [core imgproc objdetect etc]
--extra namespace=/path/to/extra/header.hpp
--outdir /path/to/output/generated/srcs
gen_matlab.py is the main control script for generating matlab source
files from given set of headers. Internally, gen_matlab:
1. constructs the headers to parse from the module root and list of modules
2. parses the headers using CppHeaderParser
3. refactors the definitions using ParseTree
4. parses .rst docs using RstParser
5. populates the templates for classes, function, enums and docs from the
definitions
gen_matlab.py requires the following inputs:
--jinja2 the path to the Jinja2 templating engine
e.g. ${CMAKE_SOURCE_DIR}/3rdparty
--hdrparser the path to the header parser directory
(opencv/modules/python/src2)
--rstparser the path to the rst parser directory
(opencv/modules/java/generator)
--moduleroot (optional) path to the opencv directory containing the modules
--modules (optional - required if --moduleroot specified) the modules
to produce bindings for. The path to the include directories
as well as the namespaces are constructed from the modules
and the moduleroot
--extra extra headers explicitly defined to parse. This must be in
the format "namepsace=/path/to/extra/header.hpp". For example,
the core module requires the extra header:
"core=/opencv/modules/core/include/opencv2/core/core/base.hpp"
--outdir the output directory to put the generated matlab sources. In
the OpenCV build this is "${CMAKE_CURRENT_BUILD_DIR}/src"
"""
# parse the input options
import sys, re, os, time
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('--jinja2')
parser.add_argument('--hdrparser')
parser.add_argument('--rstparser')
parser.add_argument('--moduleroot', default='', required=False)
parser.add_argument('--modules', nargs='*', default=[], required=False)
parser.add_argument('--extra', nargs='*', default=[], required=False)
parser.add_argument('--outdir')
args = parser.parse_args()
# add the hdr_parser and rst_parser modules to the path
sys.path.append(args.jinja2)
sys.path.append(args.hdrparser)
sys.path.append(args.rstparser)
from string import Template
from hdr_parser import CppHeaderParser
import rst_parser
from parse_tree import ParseTree, todict, constants
from filters import *
from jinja2 import Environment, FileSystemLoader
# create the generator
mwg = MatlabWrapperGenerator()
mwg.gen(args.moduleroot, args.modules, args.extra, args.outdir)