|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
#include <string>
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::gpu;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
const string FEATURES2D_DIR = "features2d";
|
|
|
|
const string IMAGE_FILENAME = "aloe.png";
|
|
|
|
|
|
|
|
class CV_GPU_SURFTest : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_GPU_SURFTest()
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
bool isSimilarKeypoints(const KeyPoint& p1, const KeyPoint& p2);
|
|
|
|
int getValidCount(const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2, const vector<DMatch>& matches);
|
|
|
|
void compareKeypointSets(const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints,
|
|
|
|
const Mat& validDescriptors, const Mat& calcDescriptors);
|
|
|
|
|
|
|
|
void emptyDataTest();
|
|
|
|
void accuracyTest();
|
|
|
|
|
|
|
|
virtual void run(int);
|
|
|
|
};
|
|
|
|
|
|
|
|
void CV_GPU_SURFTest::emptyDataTest()
|
|
|
|
{
|
|
|
|
SURF_GPU fdetector;
|
|
|
|
|
|
|
|
GpuMat image;
|
|
|
|
vector<KeyPoint> keypoints;
|
|
|
|
vector<float> descriptors;
|
|
|
|
try
|
|
|
|
{
|
|
|
|
fdetector(image, GpuMat(), keypoints, descriptors);
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must not generate exception (1).\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
}
|
|
|
|
|
|
|
|
if( !keypoints.empty() )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty keypoints vector (1).\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if( !descriptors.empty() )
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "detect() on empty image must return empty descriptors vector (1).\n" );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_OUTPUT );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CV_GPU_SURFTest::isSimilarKeypoints(const KeyPoint& p1, const KeyPoint& p2)
|
|
|
|
{
|
|
|
|
const float maxPtDif = 1.f;
|
|
|
|
const float maxSizeDif = 1.f;
|
|
|
|
const float maxAngleDif = 2.f;
|
|
|
|
const float maxResponseDif = 0.1f;
|
|
|
|
|
|
|
|
float dist = (float)norm( p1.pt - p2.pt );
|
|
|
|
return (dist < maxPtDif &&
|
|
|
|
fabs(p1.size - p2.size) < maxSizeDif &&
|
|
|
|
abs(p1.angle - p2.angle) < maxAngleDif &&
|
|
|
|
abs(p1.response - p2.response) < maxResponseDif &&
|
|
|
|
p1.octave == p2.octave &&
|
|
|
|
p1.class_id == p2.class_id );
|
|
|
|
}
|
|
|
|
|
|
|
|
int CV_GPU_SURFTest::getValidCount(const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
|
|
|
|
const vector<DMatch>& matches)
|
|
|
|
{
|
|
|
|
int count = 0;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < matches.size(); ++i)
|
|
|
|
{
|
|
|
|
const DMatch& m = matches[i];
|
|
|
|
|
|
|
|
const KeyPoint& kp1 = keypoints1[m.queryIdx];
|
|
|
|
const KeyPoint& kp2 = keypoints2[m.trainIdx];
|
|
|
|
|
|
|
|
if (isSimilarKeypoints(kp1, kp2))
|
|
|
|
++count;
|
|
|
|
}
|
|
|
|
|
|
|
|
return count;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_GPU_SURFTest::compareKeypointSets(const vector<KeyPoint>& validKeypoints, const vector<KeyPoint>& calcKeypoints,
|
|
|
|
const Mat& validDescriptors, const Mat& calcDescriptors)
|
|
|
|
{
|
|
|
|
BruteForceMatcher< L2<float> > matcher;
|
|
|
|
vector<DMatch> matches;
|
|
|
|
|
|
|
|
matcher.match(validDescriptors, calcDescriptors, matches);
|
|
|
|
|
|
|
|
int validCount = getValidCount(validKeypoints, calcKeypoints, matches);
|
|
|
|
float validRatio = (float)validCount / matches.size();
|
|
|
|
|
|
|
|
if (validRatio < 0.5f)
|
|
|
|
{
|
|
|
|
ts->printf(cvtest::TS::LOG, "Bad accuracy - %f.\n", validRatio);
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_GPU_SURFTest::accuracyTest()
|
|
|
|
{
|
|
|
|
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME;
|
|
|
|
|
|
|
|
// Read the test image.
|
|
|
|
Mat image = imread(imgFilename, 0);
|
|
|
|
if (image.empty())
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "Image %s can not be read.\n", imgFilename.c_str() );
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat mask(image.size(), CV_8UC1, Scalar::all(1));
|
|
|
|
mask(Range(0, image.rows / 2), Range(0, image.cols / 2)).setTo(Scalar::all(0));
|
|
|
|
|
|
|
|
// Compute keypoints.
|
|
|
|
vector<KeyPoint> calcKeypoints;
|
|
|
|
GpuMat calcDescriptors;
|
|
|
|
SURF_GPU fdetector; fdetector.extended = false;
|
|
|
|
fdetector(GpuMat(image), GpuMat(mask), calcKeypoints, calcDescriptors);
|
|
|
|
|
|
|
|
// Calc validation keypoints set.
|
|
|
|
vector<KeyPoint> validKeypoints;
|
|
|
|
vector<float> validDescriptors;
|
|
|
|
SURF fdetector_gold; fdetector_gold.extended = false;
|
|
|
|
fdetector_gold(image, mask, validKeypoints, validDescriptors);
|
|
|
|
|
|
|
|
compareKeypointSets(validKeypoints, calcKeypoints,
|
|
|
|
Mat(validKeypoints.size(), fdetector_gold.descriptorSize(), CV_32F, &validDescriptors[0]), calcDescriptors);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CV_GPU_SURFTest::run( int /*start_from*/ )
|
|
|
|
{
|
|
|
|
emptyDataTest();
|
|
|
|
accuracyTest();
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(SURF, empty_data_and_accuracy) { CV_GPU_SURFTest test; test.safe_run(); }
|