Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

174 lines
6.1 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2018, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#ifndef __OPENCV_DNN_OP_INF_ENGINE_HPP__
#define __OPENCV_DNN_OP_INF_ENGINE_HPP__
#ifdef HAVE_INF_ENGINE
#if defined(__GNUC__) && __GNUC__ >= 5
//#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsuggest-override"
#endif
#include <inference_engine.hpp>
#if defined(__GNUC__) && __GNUC__ >= 5
//#pragma GCC diagnostic pop
#endif
#endif // HAVE_INF_ENGINE
namespace cv { namespace dnn {
#ifdef HAVE_INF_ENGINE
class InfEngineBackendNet : public InferenceEngine::ICNNNetwork
{
public:
InfEngineBackendNet();
InfEngineBackendNet(InferenceEngine::CNNNetwork& net);
virtual void Release() noexcept CV_OVERRIDE;
void setPrecision(InferenceEngine::Precision p) noexcept;
virtual InferenceEngine::Precision getPrecision() noexcept CV_OVERRIDE;
virtual void getOutputsInfo(InferenceEngine::OutputsDataMap &out) noexcept /*CV_OVERRIDE*/;
virtual void getOutputsInfo(InferenceEngine::OutputsDataMap &out) const noexcept /*CV_OVERRIDE*/;
virtual void getInputsInfo(InferenceEngine::InputsDataMap &inputs) noexcept /*CV_OVERRIDE*/;
virtual void getInputsInfo(InferenceEngine::InputsDataMap &inputs) const noexcept /*CV_OVERRIDE*/;
virtual InferenceEngine::InputInfo::Ptr getInput(const std::string &inputName) noexcept CV_OVERRIDE;
virtual void getName(char *pName, size_t len) noexcept;
virtual void getName(char *pName, size_t len) const noexcept;
virtual size_t layerCount() noexcept CV_OVERRIDE;
virtual InferenceEngine::DataPtr& getData(const char *dname) noexcept CV_OVERRIDE;
virtual void addLayer(const InferenceEngine::CNNLayerPtr &layer) noexcept CV_OVERRIDE;
virtual InferenceEngine::StatusCode addOutput(const std::string &layerName,
size_t outputIndex = 0,
InferenceEngine::ResponseDesc *resp = nullptr) noexcept CV_OVERRIDE;
virtual InferenceEngine::StatusCode getLayerByName(const char *layerName,
InferenceEngine::CNNLayerPtr &out,
InferenceEngine::ResponseDesc *resp) noexcept CV_OVERRIDE;
virtual void setTargetDevice(InferenceEngine::TargetDevice device) noexcept CV_OVERRIDE;
virtual InferenceEngine::TargetDevice getTargetDevice() noexcept CV_OVERRIDE;
virtual InferenceEngine::StatusCode setBatchSize(const size_t size) noexcept CV_OVERRIDE;
virtual size_t getBatchSize() const noexcept CV_OVERRIDE;
void init(int targetId);
void addBlobs(const std::vector<Ptr<BackendWrapper> >& wrappers);
void forward();
bool isInitialized();
private:
std::vector<InferenceEngine::CNNLayerPtr> layers;
InferenceEngine::InputsDataMap inputs;
InferenceEngine::OutputsDataMap outputs;
InferenceEngine::BlobMap inpBlobs;
InferenceEngine::BlobMap outBlobs;
InferenceEngine::BlobMap allBlobs;
InferenceEngine::TargetDevice targetDevice;
InferenceEngine::Precision precision;
InferenceEngine::InferenceEnginePluginPtr enginePtr;
InferenceEngine::InferencePlugin plugin;
InferenceEngine::ExecutableNetwork netExec;
InferenceEngine::InferRequest infRequest;
void initPlugin(InferenceEngine::ICNNNetwork& net);
};
class InfEngineBackendNode : public BackendNode
{
public:
InfEngineBackendNode(const InferenceEngine::CNNLayerPtr& layer);
void connect(std::vector<Ptr<BackendWrapper> >& inputs,
std::vector<Ptr<BackendWrapper> >& outputs);
InferenceEngine::CNNLayerPtr layer;
// Inference Engine network object that allows to obtain the outputs of this layer.
Ptr<InfEngineBackendNet> net;
};
class InfEngineBackendWrapper : public BackendWrapper
{
public:
InfEngineBackendWrapper(int targetId, const Mat& m);
~InfEngineBackendWrapper();
virtual void copyToHost() CV_OVERRIDE;
virtual void setHostDirty() CV_OVERRIDE;
InferenceEngine::DataPtr dataPtr;
InferenceEngine::TBlob<float>::Ptr blob;
};
InferenceEngine::TBlob<float>::Ptr wrapToInfEngineBlob(const Mat& m, InferenceEngine::Layout layout = InferenceEngine::Layout::ANY);
InferenceEngine::TBlob<float>::Ptr wrapToInfEngineBlob(const Mat& m, const std::vector<size_t>& shape, InferenceEngine::Layout layout);
InferenceEngine::DataPtr infEngineDataNode(const Ptr<BackendWrapper>& ptr);
Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob);
// Convert Inference Engine blob with FP32 precision to FP16 precision.
// Allocates memory for a new blob.
InferenceEngine::TBlob<int16_t>::Ptr convertFp16(const InferenceEngine::Blob::Ptr& blob);
// This is a fake class to run networks from Model Optimizer. Objects of that
// class simulate responses of layers are imported by OpenCV and supported by
// Inference Engine. The main difference is that they do not perform forward pass.
class InfEngineBackendLayer : public Layer
{
public:
InfEngineBackendLayer(const InferenceEngine::DataPtr& output);
virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const CV_OVERRIDE;
virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output,
std::vector<Mat> &internals) CV_OVERRIDE;
virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs,
OutputArrayOfArrays internals) CV_OVERRIDE;
virtual bool supportBackend(int backendId) CV_OVERRIDE;
private:
InferenceEngine::DataPtr output;
};
#endif // HAVE_INF_ENGINE
bool haveInfEngine();
void forwardInfEngine(Ptr<BackendNode>& node);
}} // namespace dnn, namespace cv
#endif // __OPENCV_DNN_OP_INF_ENGINE_HPP__