/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
# include "test_precomp.hpp"
# include "opencv2/highgui/highgui.hpp"
using namespace std ;
using namespace cv ;
const string FEATURES2D_DIR = " features2d " ;
const string IMAGE_FILENAME = " tsukuba.png " ;
/****************************************************************************************\
* Algorithmic tests for descriptor matchers *
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
class CV_DescriptorMatcherTest : public cvtest : : BaseTest
{
public :
CV_DescriptorMatcherTest ( const string & _name , const Ptr < DescriptorMatcher > & _dmatcher , float _badPart ) :
badPart ( _badPart ) , name ( _name ) , dmatcher ( _dmatcher )
{ }
protected :
static const int dim = 500 ;
static const int queryDescCount = 300 ; // must be even number because we split train data in some cases in two
static const int countFactor = 4 ; // do not change it
const float badPart ;
virtual void run ( int ) ;
void generateData ( Mat & query , Mat & train ) ;
void emptyDataTest ( ) ;
void matchTest ( const Mat & query , const Mat & train ) ;
void knnMatchTest ( const Mat & query , const Mat & train ) ;
void radiusMatchTest ( const Mat & query , const Mat & train ) ;
string name ;
Ptr < DescriptorMatcher > dmatcher ;
private :
CV_DescriptorMatcherTest & operator = ( const CV_DescriptorMatcherTest & ) { return * this ; }
} ;
void CV_DescriptorMatcherTest : : emptyDataTest ( )
{
assert ( ! dmatcher . empty ( ) ) ;
Mat queryDescriptors , trainDescriptors , mask ;
vector < Mat > trainDescriptorCollection , masks ;
vector < DMatch > matches ;
vector < vector < DMatch > > vmatches ;
try
{
dmatcher - > match ( queryDescriptors , trainDescriptors , matches , mask ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " match() on empty descriptors must not generate exception (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
try
{
dmatcher - > knnMatch ( queryDescriptors , trainDescriptors , vmatches , 2 , mask ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " knnMatch() on empty descriptors must not generate exception (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
try
{
dmatcher - > radiusMatch ( queryDescriptors , trainDescriptors , vmatches , 10.f , mask ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " radiusMatch() on empty descriptors must not generate exception (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
try
{
dmatcher - > add ( trainDescriptorCollection ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " add() on empty descriptors must not generate exception. \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
try
{
dmatcher - > match ( queryDescriptors , matches , masks ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " match() on empty descriptors must not generate exception (2). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
try
{
dmatcher - > knnMatch ( queryDescriptors , vmatches , 2 , masks ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " knnMatch() on empty descriptors must not generate exception (2). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
try
{
dmatcher - > radiusMatch ( queryDescriptors , vmatches , 10.f , masks ) ;
}
catch ( . . . )
{
ts - > printf ( cvtest : : TS : : LOG , " radiusMatch() on empty descriptors must not generate exception (2). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
}
void CV_DescriptorMatcherTest : : generateData ( Mat & query , Mat & train )
{
RNG & rng = theRNG ( ) ;
// Generate query descriptors randomly.
// Descriptor vector elements are integer values.
Mat buf ( queryDescCount , dim , CV_32SC1 ) ;
rng . fill ( buf , RNG : : UNIFORM , Scalar : : all ( 0 ) , Scalar ( 3 ) ) ;
buf . convertTo ( query , CV_32FC1 ) ;
// Generate train decriptors as follows:
// copy each query descriptor to train set countFactor times
// and perturb some one element of the copied descriptors in
// in ascending order. General boundaries of the perturbation
// are (0.f, 1.f).
train . create ( query . rows * countFactor , query . cols , CV_32FC1 ) ;
float step = 1.f / countFactor ;
for ( int qIdx = 0 ; qIdx < query . rows ; qIdx + + )
{
Mat queryDescriptor = query . row ( qIdx ) ;
for ( int c = 0 ; c < countFactor ; c + + )
{
int tIdx = qIdx * countFactor + c ;
Mat trainDescriptor = train . row ( tIdx ) ;
queryDescriptor . copyTo ( trainDescriptor ) ;
int elem = rng ( dim ) ;
float diff = rng . uniform ( step * c , step * ( c + 1 ) ) ;
trainDescriptor . at < float > ( 0 , elem ) + = diff ;
}
}
}
void CV_DescriptorMatcherTest : : matchTest ( const Mat & query , const Mat & train )
{
dmatcher - > clear ( ) ;
// test const version of match()
{
vector < DMatch > matches ;
dmatcher - > match ( query , train , matches ) ;
if ( ( int ) matches . size ( ) ! = queryDescCount )
{
ts - > printf ( cvtest : : TS : : LOG , " Incorrect matches count while test match() function (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
else
{
int badCount = 0 ;
for ( size_t i = 0 ; i < matches . size ( ) ; i + + )
{
DMatch & match = matches [ i ] ;
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( int ) i * countFactor ) | | ( match . imgIdx ! = 0 ) )
badCount + + ;
}
if ( ( float ) badCount > ( float ) queryDescCount * badPart )
{
ts - > printf ( cvtest : : TS : : LOG , " %f - too large bad matches part while test match() function (1). \n " ,
( float ) badCount / ( float ) queryDescCount ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
}
}
// test const version of match() for the same query and test descriptors
{
vector < DMatch > matches ;
dmatcher - > match ( query , query , matches ) ;
if ( ( int ) matches . size ( ) ! = query . rows )
{
ts - > printf ( cvtest : : TS : : LOG , " Incorrect matches count while test match() function for the same query and test descriptors (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
else
{
for ( size_t i = 0 ; i < matches . size ( ) ; i + + )
{
DMatch & match = matches [ i ] ;
//std::cout << match.distance << std::endl;
if ( match . queryIdx ! = ( int ) i | | match . trainIdx ! = ( int ) i | | std : : abs ( match . distance ) > FLT_EPSILON )
{
ts - > printf ( cvtest : : TS : : LOG , " Bad match (i=%d, queryIdx=%d, trainIdx=%d, distance=%f) while test match() function for the same query and test descriptors (1). \n " ,
i , match . queryIdx , match . trainIdx , match . distance ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
}
}
}
// test version of match() with add()
{
vector < DMatch > matches ;
// make add() twice to test such case
dmatcher - > add ( vector < Mat > ( 1 , train . rowRange ( 0 , train . rows / 2 ) ) ) ;
dmatcher - > add ( vector < Mat > ( 1 , train . rowRange ( train . rows / 2 , train . rows ) ) ) ;
// prepare masks (make first nearest match illegal)
vector < Mat > masks ( 2 ) ;
for ( int mi = 0 ; mi < 2 ; mi + + )
{
masks [ mi ] = Mat ( query . rows , train . rows / 2 , CV_8UC1 , Scalar : : all ( 1 ) ) ;
for ( int di = 0 ; di < queryDescCount / 2 ; di + + )
masks [ mi ] . col ( di * countFactor ) . setTo ( Scalar : : all ( 0 ) ) ;
}
dmatcher - > match ( query , matches , masks ) ;
if ( ( int ) matches . size ( ) ! = queryDescCount )
{
ts - > printf ( cvtest : : TS : : LOG , " Incorrect matches count while test match() function (2). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
else
{
int badCount = 0 ;
for ( size_t i = 0 ; i < matches . size ( ) ; i + + )
{
DMatch & match = matches [ i ] ;
int shift = dmatcher - > isMaskSupported ( ) ? 1 : 0 ;
{
if ( i < queryDescCount / 2 )
{
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( int ) i * countFactor + shift ) | | ( match . imgIdx ! = 0 ) )
badCount + + ;
}
else
{
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( ( int ) i - queryDescCount / 2 ) * countFactor + shift ) | | ( match . imgIdx ! = 1 ) )
badCount + + ;
}
}
}
if ( ( float ) badCount > ( float ) queryDescCount * badPart )
{
ts - > printf ( cvtest : : TS : : LOG , " %f - too large bad matches part while test match() function (2). \n " ,
( float ) badCount / ( float ) queryDescCount ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_BAD_ACCURACY ) ;
}
}
}
}
void CV_DescriptorMatcherTest : : knnMatchTest ( const Mat & query , const Mat & train )
{
dmatcher - > clear ( ) ;
// test const version of knnMatch()
{
const int knn = 3 ;
vector < vector < DMatch > > matches ;
dmatcher - > knnMatch ( query , train , matches , knn ) ;
if ( ( int ) matches . size ( ) ! = queryDescCount )
{
ts - > printf ( cvtest : : TS : : LOG , " Incorrect matches count while test knnMatch() function (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
else
{
int badCount = 0 ;
for ( size_t i = 0 ; i < matches . size ( ) ; i + + )
{
if ( ( int ) matches [ i ] . size ( ) ! = knn )
badCount + + ;
else
{
int localBadCount = 0 ;
for ( int k = 0 ; k < knn ; k + + )
{
DMatch & match = matches [ i ] [ k ] ;
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( int ) i * countFactor + k ) | | ( match . imgIdx ! = 0 ) )
localBadCount + + ;
}
badCount + = localBadCount > 0 ? 1 : 0 ;
}
}
if ( ( float ) badCount > ( float ) queryDescCount * badPart )
{
ts - > printf ( cvtest : : TS : : LOG , " %f - too large bad matches part while test knnMatch() function (1). \n " ,
( float ) badCount / ( float ) queryDescCount ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
}
}
// test version of knnMatch() with add()
{
const int knn = 2 ;
vector < vector < DMatch > > matches ;
// make add() twice to test such case
dmatcher - > add ( vector < Mat > ( 1 , train . rowRange ( 0 , train . rows / 2 ) ) ) ;
dmatcher - > add ( vector < Mat > ( 1 , train . rowRange ( train . rows / 2 , train . rows ) ) ) ;
// prepare masks (make first nearest match illegal)
vector < Mat > masks ( 2 ) ;
for ( int mi = 0 ; mi < 2 ; mi + + )
{
masks [ mi ] = Mat ( query . rows , train . rows / 2 , CV_8UC1 , Scalar : : all ( 1 ) ) ;
for ( int di = 0 ; di < queryDescCount / 2 ; di + + )
masks [ mi ] . col ( di * countFactor ) . setTo ( Scalar : : all ( 0 ) ) ;
}
dmatcher - > knnMatch ( query , matches , knn , masks ) ;
if ( ( int ) matches . size ( ) ! = queryDescCount )
{
ts - > printf ( cvtest : : TS : : LOG , " Incorrect matches count while test knnMatch() function (2). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
else
{
int badCount = 0 ;
int shift = dmatcher - > isMaskSupported ( ) ? 1 : 0 ;
for ( size_t i = 0 ; i < matches . size ( ) ; i + + )
{
if ( ( int ) matches [ i ] . size ( ) ! = knn )
badCount + + ;
else
{
int localBadCount = 0 ;
for ( int k = 0 ; k < knn ; k + + )
{
DMatch & match = matches [ i ] [ k ] ;
{
if ( i < queryDescCount / 2 )
{
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( int ) i * countFactor + k + shift ) | |
( match . imgIdx ! = 0 ) )
localBadCount + + ;
}
else
{
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( ( int ) i - queryDescCount / 2 ) * countFactor + k + shift ) | |
( match . imgIdx ! = 1 ) )
localBadCount + + ;
}
}
}
badCount + = localBadCount > 0 ? 1 : 0 ;
}
}
if ( ( float ) badCount > ( float ) queryDescCount * badPart )
{
ts - > printf ( cvtest : : TS : : LOG , " %f - too large bad matches part while test knnMatch() function (2). \n " ,
( float ) badCount / ( float ) queryDescCount ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_BAD_ACCURACY ) ;
}
}
}
}
void CV_DescriptorMatcherTest : : radiusMatchTest ( const Mat & query , const Mat & train )
{
dmatcher - > clear ( ) ;
// test const version of match()
{
const float radius = 1.f / countFactor ;
vector < vector < DMatch > > matches ;
dmatcher - > radiusMatch ( query , train , matches , radius ) ;
if ( ( int ) matches . size ( ) ! = queryDescCount )
{
ts - > printf ( cvtest : : TS : : LOG , " Incorrect matches count while test radiusMatch() function (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
else
{
int badCount = 0 ;
for ( size_t i = 0 ; i < matches . size ( ) ; i + + )
{
if ( ( int ) matches [ i ] . size ( ) ! = 1 )
badCount + + ;
else
{
DMatch & match = matches [ i ] [ 0 ] ;
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( int ) i * countFactor ) | | ( match . imgIdx ! = 0 ) )
badCount + + ;
}
}
if ( ( float ) badCount > ( float ) queryDescCount * badPart )
{
ts - > printf ( cvtest : : TS : : LOG , " %f - too large bad matches part while test radiusMatch() function (1). \n " ,
( float ) badCount / ( float ) queryDescCount ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
}
}
// test version of match() with add()
{
int n = 3 ;
const float radius = 1.f / countFactor * n ;
vector < vector < DMatch > > matches ;
// make add() twice to test such case
dmatcher - > add ( vector < Mat > ( 1 , train . rowRange ( 0 , train . rows / 2 ) ) ) ;
dmatcher - > add ( vector < Mat > ( 1 , train . rowRange ( train . rows / 2 , train . rows ) ) ) ;
// prepare masks (make first nearest match illegal)
vector < Mat > masks ( 2 ) ;
for ( int mi = 0 ; mi < 2 ; mi + + )
{
masks [ mi ] = Mat ( query . rows , train . rows / 2 , CV_8UC1 , Scalar : : all ( 1 ) ) ;
for ( int di = 0 ; di < queryDescCount / 2 ; di + + )
masks [ mi ] . col ( di * countFactor ) . setTo ( Scalar : : all ( 0 ) ) ;
}
dmatcher - > radiusMatch ( query , matches , radius , masks ) ;
//int curRes = cvtest::TS::OK;
if ( ( int ) matches . size ( ) ! = queryDescCount )
{
ts - > printf ( cvtest : : TS : : LOG , " Incorrect matches count while test radiusMatch() function (1). \n " ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_INVALID_OUTPUT ) ;
}
int badCount = 0 ;
int shift = dmatcher - > isMaskSupported ( ) ? 1 : 0 ;
int needMatchCount = dmatcher - > isMaskSupported ( ) ? n - 1 : n ;
for ( size_t i = 0 ; i < matches . size ( ) ; i + + )
{
if ( ( int ) matches [ i ] . size ( ) ! = needMatchCount )
badCount + + ;
else
{
int localBadCount = 0 ;
for ( int k = 0 ; k < needMatchCount ; k + + )
{
DMatch & match = matches [ i ] [ k ] ;
{
if ( i < queryDescCount / 2 )
{
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( int ) i * countFactor + k + shift ) | |
( match . imgIdx ! = 0 ) )
localBadCount + + ;
}
else
{
if ( ( match . queryIdx ! = ( int ) i ) | | ( match . trainIdx ! = ( ( int ) i - queryDescCount / 2 ) * countFactor + k + shift ) | |
( match . imgIdx ! = 1 ) )
localBadCount + + ;
}
}
}
badCount + = localBadCount > 0 ? 1 : 0 ;
}
}
if ( ( float ) badCount > ( float ) queryDescCount * badPart )
{
//curRes = cvtest::TS::FAIL_INVALID_OUTPUT;
ts - > printf ( cvtest : : TS : : LOG , " %f - too large bad matches part while test radiusMatch() function (2). \n " ,
( float ) badCount / ( float ) queryDescCount ) ;
ts - > set_failed_test_info ( cvtest : : TS : : FAIL_BAD_ACCURACY ) ;
}
}
}
void CV_DescriptorMatcherTest : : run ( int )
{
Mat query , train ;
generateData ( query , train ) ;
matchTest ( query , train ) ;
knnMatchTest ( query , train ) ;
radiusMatchTest ( query , train ) ;
}
/****************************************************************************************\
* Tests registrations *
\ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
TEST ( Features2d_DescriptorMatcher_BruteForce , regression )
{
CV_DescriptorMatcherTest test ( " descriptor-matcher-brute-force " , Algorithm : : create < DescriptorMatcher > ( " DescriptorMatcher.BFMatcher " ) , 0.01f ) ;
test . safe_run ( ) ;
}
TEST ( Features2d_DescriptorMatcher_FlannBased , regression )
{
CV_DescriptorMatcherTest test ( " descriptor-matcher-flann-based " , Algorithm : : create < DescriptorMatcher > ( " DescriptorMatcher.FlannBasedMatcher " ) , 0.04f ) ;
test . safe_run ( ) ;
}