|
|
|
\ifCpp
|
|
|
|
\section{Common Interfaces of Feature Detectors}
|
|
|
|
Feature detectors in OpenCV have wrappers with common interface that enables to switch easily
|
|
|
|
between different algorithms solving the same problem. All objects that implement keypoint detectors
|
|
|
|
inherit \cvCppCross{FeatureDetector} interface.
|
|
|
|
|
|
|
|
\cvclass{KeyPoint}
|
|
|
|
Data structure for salient point detectors.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class KeyPoint
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
// the default constructor
|
|
|
|
KeyPoint() : pt(0,0), size(0), angle(-1), response(0), octave(0),
|
|
|
|
class_id(-1) {}
|
|
|
|
// the full constructor
|
|
|
|
KeyPoint(Point2f _pt, float _size, float _angle=-1,
|
|
|
|
float _response=0, int _octave=0, int _class_id=-1)
|
|
|
|
: pt(_pt), size(_size), angle(_angle), response(_response),
|
|
|
|
octave(_octave), class_id(_class_id) {}
|
|
|
|
// another form of the full constructor
|
|
|
|
KeyPoint(float x, float y, float _size, float _angle=-1,
|
|
|
|
float _response=0, int _octave=0, int _class_id=-1)
|
|
|
|
: pt(x, y), size(_size), angle(_angle), response(_response),
|
|
|
|
octave(_octave), class_id(_class_id) {}
|
|
|
|
// converts vector of keypoints to vector of points
|
|
|
|
static void convert(const std::vector<KeyPoint>& keypoints,
|
|
|
|
std::vector<Point2f>& points2f,
|
|
|
|
const std::vector<int>& keypointIndexes=std::vector<int>());
|
|
|
|
// converts vector of points to the vector of keypoints, where each
|
|
|
|
// keypoint is assigned the same size and the same orientation
|
|
|
|
static void convert(const std::vector<Point2f>& points2f,
|
|
|
|
std::vector<KeyPoint>& keypoints,
|
|
|
|
float size=1, float response=1, int octave=0,
|
|
|
|
int class_id=-1);
|
|
|
|
|
|
|
|
// computes overlap for pair of keypoints;
|
|
|
|
// overlap is a ratio between area of keypoint regions intersection and
|
|
|
|
// area of keypoint regions union (now keypoint region is circle)
|
|
|
|
static float overlap(const KeyPoint& kp1, const KeyPoint& kp2);
|
|
|
|
|
|
|
|
Point2f pt; // coordinates of the keypoints
|
|
|
|
float size; // diameter of the meaningfull keypoint neighborhood
|
|
|
|
float angle; // computed orientation of the keypoint (-1 if not applicable)
|
|
|
|
float response; // the response by which the most strong keypoints
|
|
|
|
// have been selected. Can be used for the further sorting
|
|
|
|
// or subsampling
|
|
|
|
int octave; // octave (pyramid layer) from which the keypoint has been extracted
|
|
|
|
int class_id; // object class (if the keypoints need to be clustered by
|
|
|
|
// an object they belong to)
|
|
|
|
};
|
|
|
|
|
|
|
|
// writes vector of keypoints to the file storage
|
|
|
|
void write(FileStorage& fs, const string& name, const vector<KeyPoint>& keypoints);
|
|
|
|
// reads vector of keypoints from the specified file storage node
|
|
|
|
void read(const FileNode& node, CV_OUT vector<KeyPoint>& keypoints);
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{FeatureDetector}
|
|
|
|
Abstract base class for 2D image feature detectors.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class CV_EXPORTS FeatureDetector
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
virtual ~FeatureDetector();
|
|
|
|
|
|
|
|
void detect( const Mat& image, vector<KeyPoint>& keypoints,
|
|
|
|
const Mat& mask=Mat() ) const;
|
|
|
|
|
|
|
|
void detect( const vector<Mat>& images,
|
|
|
|
vector<vector<KeyPoint> >& keypoints,
|
|
|
|
const vector<Mat>& masks=vector<Mat>() ) const;
|
|
|
|
|
|
|
|
virtual void read(const FileNode&);
|
|
|
|
virtual void write(FileStorage&) const;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvCppFunc{FeatureDetector::detect}
|
|
|
|
Detect keypoints in an image (first variant) or image set (second variant).
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void FeatureDetector::detect( const Mat\& image,
|
|
|
|
\par vector<KeyPoint>\& keypoints,
|
|
|
|
\par const Mat\& mask=Mat() ) const;
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{image}{The image.}
|
|
|
|
\cvarg{keypoints}{The detected keypoints.}
|
|
|
|
\cvarg{mask}{Mask specifying where to look for keypoints (optional). Must be a char matrix
|
|
|
|
with non-zero values in the region of interest.}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void FeatureDetector::detect( const vector<Mat>\& images,
|
|
|
|
\par vector<vector<KeyPoint> >\& keypoints,
|
|
|
|
\par const vector<Mat>\& masks=vector<Mat>() ) const;
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{images}{Images set.}
|
|
|
|
\cvarg{keypoints}{Collection of keypoints detected in an input images. keypoints[i] is a set of keypoints detected in an images[i].}
|
|
|
|
\cvarg{masks}{Masks for each input image specifying where to look for keypoints (optional). masks[i] is a mask for images[i].
|
|
|
|
Each element of \texttt{masks} vector must be a char matrix with non-zero values in the region of interest.}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvCppFunc{FeatureDetector::read}
|
|
|
|
Read feature detector object from file node.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void FeatureDetector::read( const FileNode\& fn );
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{fn}{File node from which detector will be read.}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvCppFunc{FeatureDetector::write}
|
|
|
|
Write feature detector object to file storage.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void FeatureDetector::write( FileStorage\& fs ) const;
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{fs}{File storage in which detector will be written.}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvclass{FastFeatureDetector}
|
|
|
|
Wrapping class for feature detection using \cvCppCross{FAST} method.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class FastFeatureDetector : public FeatureDetector
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
FastFeatureDetector( int threshold=1, bool nonmaxSuppression=true );
|
|
|
|
virtual void read( const FileNode& fn );
|
|
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{GoodFeaturesToTrackDetector}
|
|
|
|
Wrapping class for feature detection using \cvCppCross{goodFeaturesToTrack} function.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class GoodFeaturesToTrackDetector : public FeatureDetector
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
class Params
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
Params( int maxCorners=1000, double qualityLevel=0.01,
|
|
|
|
double minDistance=1., int blockSize=3,
|
|
|
|
bool useHarrisDetector=false, double k=0.04 );
|
|
|
|
void read( const FileNode& fn );
|
|
|
|
void write( FileStorage& fs ) const;
|
|
|
|
|
|
|
|
int maxCorners;
|
|
|
|
double qualityLevel;
|
|
|
|
double minDistance;
|
|
|
|
int blockSize;
|
|
|
|
bool useHarrisDetector;
|
|
|
|
double k;
|
|
|
|
};
|
|
|
|
|
|
|
|
GoodFeaturesToTrackDetector( const GoodFeaturesToTrackDetector::Params& params=
|
|
|
|
GoodFeaturesToTrackDetector::Params() );
|
|
|
|
GoodFeaturesToTrackDetector( int maxCorners, double qualityLevel,
|
|
|
|
double minDistance, int blockSize=3,
|
|
|
|
bool useHarrisDetector=false, double k=0.04 );
|
|
|
|
virtual void read( const FileNode& fn );
|
|
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{MserFeatureDetector}
|
|
|
|
Wrapping class for feature detection using \cvCppCross{MSER} class.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class MserFeatureDetector : public FeatureDetector
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
MserFeatureDetector( CvMSERParams params=cvMSERParams() );
|
|
|
|
MserFeatureDetector( int delta, int minArea, int maxArea,
|
|
|
|
double maxVariation, double minDiversity,
|
|
|
|
int maxEvolution, double areaThreshold,
|
|
|
|
double minMargin, int edgeBlurSize );
|
|
|
|
virtual void read( const FileNode& fn );
|
|
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{StarFeatureDetector}
|
|
|
|
Wrapping class for feature detection using \cvCppCross{StarDetector} class.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class StarFeatureDetector : public FeatureDetector
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
StarFeatureDetector( int maxSize=16, int responseThreshold=30,
|
|
|
|
int lineThresholdProjected = 10,
|
|
|
|
int lineThresholdBinarized=8, int suppressNonmaxSize=5 );
|
|
|
|
virtual void read( const FileNode& fn );
|
|
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{SiftFeatureDetector}
|
|
|
|
Wrapping class for feature detection using \cvCppCross{SIFT} class.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class SiftFeatureDetector : public FeatureDetector
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
SiftFeatureDetector(
|
|
|
|
const SIFT::DetectorParams& detectorParams=SIFT::DetectorParams(),
|
|
|
|
const SIFT::CommonParams& commonParams=SIFT::CommonParams() );
|
|
|
|
SiftFeatureDetector( double threshold, double edgeThreshold,
|
|
|
|
int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES,
|
|
|
|
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS,
|
|
|
|
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE,
|
|
|
|
int angleMode=SIFT::CommonParams::FIRST_ANGLE );
|
|
|
|
virtual void read( const FileNode& fn );
|
|
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{SurfFeatureDetector}
|
|
|
|
Wrapping class for feature detection using \cvCppCross{SURF} class.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class SurfFeatureDetector : public FeatureDetector
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
SurfFeatureDetector( double hessianThreshold = 400., int octaves = 3,
|
|
|
|
int octaveLayers = 4 );
|
|
|
|
virtual void read( const FileNode& fn );
|
|
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{GridAdaptedFeatureDetector}
|
|
|
|
Adapts a detector to partition the source image into a grid and detect
|
|
|
|
points in each cell.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class GridAdaptedFeatureDetector : public FeatureDetector
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
/*
|
|
|
|
* detector Detector that will be adapted.
|
|
|
|
* maxTotalKeypoints Maximum count of keypoints detected on the image.
|
|
|
|
* Only the strongest keypoints will be keeped.
|
|
|
|
* gridRows Grid rows count.
|
|
|
|
* gridCols Grid column count.
|
|
|
|
*/
|
|
|
|
GridAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
|
|
|
|
int maxTotalKeypoints, int gridRows=4,
|
|
|
|
int gridCols=4 );
|
|
|
|
virtual void read( const FileNode& fn );
|
|
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{PyramidAdaptedFeatureDetector}
|
|
|
|
Adapts a detector to detect points over multiple levels of a Gaussian
|
|
|
|
pyramid. Useful for detectors that are not inherently scaled.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class PyramidAdaptedFeatureDetector : public FeatureDetector
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
PyramidAdaptedFeatureDetector( const Ptr<FeatureDetector>& detector,
|
|
|
|
int levels=2 );
|
|
|
|
virtual void read( const FileNode& fn );
|
|
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
|
|
|
|
\cvclass{DynamicDetectorAdaptor}
|
|
|
|
An adaptively adjusting detector that iteratively detects until the desired number
|
|
|
|
of features are found.
|
|
|
|
|
|
|
|
Adapters can easily be implemented for any detector through the creation of an Adjuster
|
|
|
|
object.
|
|
|
|
|
|
|
|
Beware that this is not thread safe - as the adjustment of parameters breaks the const
|
|
|
|
of the detection routine...
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
template<typename Adjuster>
|
|
|
|
class DynamicDetectorAdaptor: public FeatureDetector {
|
|
|
|
public:
|
|
|
|
DynamicDetectorAdaptor(int min_features, int max_features, int max_iters,
|
|
|
|
const Adjuster& a = Adjuster());
|
|
|
|
...
|
|
|
|
};
|
|
|
|
|
|
|
|
//expected Adjuster interface
|
|
|
|
class MyAdjuster {
|
|
|
|
public:
|
|
|
|
//this should call a FeatureDetector and populate keypoints
|
|
|
|
//e.g. FASTFeatureDetector(thresh).detect(img,mask,keypoints)
|
|
|
|
void detect(const Mat& img, const Mat& mask, std::vector<KeyPoint>& keypoints) const;
|
|
|
|
|
|
|
|
//called if there are too few features detected, should adjust feature detector params
|
|
|
|
//accordingly
|
|
|
|
void tooFew(int min, int n_detected);
|
|
|
|
|
|
|
|
//called if there are too many features detected, should adjust feature detector params
|
|
|
|
//accordingly
|
|
|
|
void tooMany(int max, int n_detected);
|
|
|
|
|
|
|
|
//return whether or not the threshhold is beyond
|
|
|
|
//a useful point
|
|
|
|
bool good() const;
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
|
|
|
|
\cvCppFunc{createFeatureDetector}
|
|
|
|
Feature detector factory that creates \cvCppCross{FeatureDetector} of given type with
|
|
|
|
default parameters (rather using default constructor).
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
Ptr<FeatureDetector> createFeatureDetector( const string& detectorType );
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{detectorType}{Feature detector type.}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
Now the following detector types are supported ''FAST'', ''STAR'', ''SIFT'',
|
|
|
|
''SURF'', ''MSER'', ''GFTT'', ''HARRIS''.
|
|
|
|
|
|
|
|
\section{Common Interfaces of Descriptor Extractors}
|
|
|
|
Extractors of keypoint descriptors in OpenCV have wrappers with common interface that enables to switch easily
|
|
|
|
between different algorithms solving the same problem. This section is devoted to computing descriptors
|
|
|
|
that are represented as vectors in a multidimensional space. All objects that implement ''vector''
|
|
|
|
descriptor extractors inherit \cvCppCross{DescriptorExtractor} interface.
|
|
|
|
|
|
|
|
\cvclass{DescriptorExtractor}
|
|
|
|
Abstract base class for computing descriptors for image keypoints.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class CV_EXPORTS DescriptorExtractor
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
virtual ~DescriptorExtractor();
|
|
|
|
|
|
|
|
void compute( const Mat& image, vector<KeyPoint>& keypoints,
|
|
|
|
Mat& descriptors ) const;
|
|
|
|
void compute( const vector<Mat>& images, vector<vector<KeyPoint> >& keypoints,
|
|
|
|
vector<Mat>& descriptors ) const;
|
|
|
|
|
|
|
|
virtual void read( const FileNode& );
|
|
|
|
virtual void write( FileStorage& ) const;
|
|
|
|
|
|
|
|
virtual int descriptorSize() const = 0;
|
|
|
|
virtual int descriptorType() const = 0;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
In this interface we assume a keypoint descriptor can be represented as a
|
|
|
|
dense, fixed-dimensional vector of some basic type. Most descriptors used
|
|
|
|
in practice follow this pattern, as it makes it very easy to compute
|
|
|
|
distances between descriptors. Therefore we represent a collection of
|
|
|
|
descriptors as a \cvCppCross{Mat}, where each row is one keypoint descriptor.
|
|
|
|
|
|
|
|
\cvCppFunc{DescriptorExtractor::compute}
|
|
|
|
Compute the descriptors for a set of keypoints detected in an image (first variant)
|
|
|
|
or image set (second variant).
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void DescriptorExtractor::compute( const Mat\& image,
|
|
|
|
\par vector<KeyPoint>\& keypoints,
|
|
|
|
\par Mat\& descriptors ) const;
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{image}{The image.}
|
|
|
|
\cvarg{keypoints}{The keypoints. Keypoints for which a descriptor cannot be computed are removed.}
|
|
|
|
\cvarg{descriptors}{The descriptors. Row i is the descriptor for keypoint i.}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void DescriptorExtractor::compute( const vector<Mat>\& images,
|
|
|
|
\par vector<vector<KeyPoint> >\& keypoints,
|
|
|
|
\par vector<Mat>\& descriptors ) const;
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{images}{The image set.}
|
|
|
|
\cvarg{keypoints}{Input keypoints collection. keypoints[i] is keypoints
|
|
|
|
detected in images[i]. Keypoints for which a descriptor
|
|
|
|
can not be computed are removed.}
|
|
|
|
\cvarg{descriptors}{Descriptor collection. descriptors[i] are descriptors computed for
|
|
|
|
a set keypoints[i].}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvCppFunc{DescriptorExtractor::read}
|
|
|
|
Read descriptor extractor object from file node.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void DescriptorExtractor::read( const FileNode\& fn );
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{fn}{File node from which detector will be read.}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvCppFunc{DescriptorExtractor::write}
|
|
|
|
Write descriptor extractor object to file storage.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void DescriptorExtractor::write( FileStorage\& fs ) const;
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{fs}{File storage in which detector will be written.}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvclass{SiftDescriptorExtractor}
|
|
|
|
Wrapping class for descriptors computing using \cvCppCross{SIFT} class.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class SiftDescriptorExtractor : public DescriptorExtractor
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
SiftDescriptorExtractor(
|
|
|
|
const SIFT::DescriptorParams& descriptorParams=SIFT::DescriptorParams(),
|
|
|
|
const SIFT::CommonParams& commonParams=SIFT::CommonParams() );
|
|
|
|
SiftDescriptorExtractor( double magnification, bool isNormalize=true,
|
|
|
|
bool recalculateAngles=true, int nOctaves=SIFT::CommonParams::DEFAULT_NOCTAVES,
|
|
|
|
int nOctaveLayers=SIFT::CommonParams::DEFAULT_NOCTAVE_LAYERS,
|
|
|
|
int firstOctave=SIFT::CommonParams::DEFAULT_FIRST_OCTAVE,
|
|
|
|
int angleMode=SIFT::CommonParams::FIRST_ANGLE );
|
|
|
|
|
|
|
|
virtual void read (const FileNode &fn);
|
|
|
|
virtual void write (FileStorage &fs) const;
|
|
|
|
virtual int descriptorSize() const;
|
|
|
|
virtual int descriptorType() const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
}
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{SurfDescriptorExtractor}
|
|
|
|
Wrapping class for descriptors computing using \cvCppCross{SURF} class.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class SurfDescriptorExtractor : public DescriptorExtractor
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
SurfDescriptorExtractor( int nOctaves=4,
|
|
|
|
int nOctaveLayers=2, bool extended=false );
|
|
|
|
|
|
|
|
virtual void read (const FileNode &fn);
|
|
|
|
virtual void write (FileStorage &fs) const;
|
|
|
|
virtual int descriptorSize() const;
|
|
|
|
virtual int descriptorType() const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
}
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{CalonderDescriptorExtractor}
|
|
|
|
Wrapping class for descriptors computing using \cvCppCross{RTreeClassifier} class.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
template<typename T>
|
|
|
|
class CalonderDescriptorExtractor : public DescriptorExtractor
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CalonderDescriptorExtractor( const string& classifierFile );
|
|
|
|
|
|
|
|
virtual void read( const FileNode &fn );
|
|
|
|
virtual void write( FileStorage &fs ) const;
|
|
|
|
virtual int descriptorSize() const;
|
|
|
|
virtual int descriptorType() const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
}
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{OpponentColorDescriptorExtractor}
|
|
|
|
Adapts a descriptor extractor to compute descripors in Opponent Color Space
|
|
|
|
(refer to van de Sande et al., CGIV 2008 "Color Descriptors for Object Category Recognition").
|
|
|
|
Input RGB image is transformed in Opponent Color Space. Then unadapted descriptor extractor
|
|
|
|
(set in constructor) computes descriptors on each of the three channel and concatenate
|
|
|
|
them into a single color descriptor.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class OpponentColorDescriptorExtractor : public DescriptorExtractor
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
OpponentColorDescriptorExtractor( const Ptr<DescriptorExtractor>& dextractor );
|
|
|
|
|
|
|
|
virtual void read( const FileNode& );
|
|
|
|
virtual void write( FileStorage& ) const;
|
|
|
|
virtual int descriptorSize() const;
|
|
|
|
virtual int descriptorType() const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{BriefDescriptorExtractor}
|
|
|
|
Class for computing BRIEF descriptors described in paper of Calonder M., Lepetit V.,
|
|
|
|
Strecha C., Fua P.: ''BRIEF: Binary Robust Independent Elementary Features.''
|
|
|
|
11th European Conference on Computer Vision (ECCV), Heraklion, Crete. LNCS Springer, September 2010.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class BriefDescriptorExtractor : public DescriptorExtractor
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
static const int PATCH_SIZE = 48;
|
|
|
|
static const int KERNEL_SIZE = 9;
|
|
|
|
|
|
|
|
// bytes is a length of descriptor in bytes. It can be equal 16, 32 or 64 bytes.
|
|
|
|
BriefDescriptorExtractor( int bytes = 32 );
|
|
|
|
|
|
|
|
virtual void read( const FileNode& );
|
|
|
|
virtual void write( FileStorage& ) const;
|
|
|
|
virtual int descriptorSize() const;
|
|
|
|
virtual int descriptorType() const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvCppFunc{createDescriptorExtractor}
|
|
|
|
Descriptor extractor factory that creates \cvCppCross{DescriptorExtractor} of given type with
|
|
|
|
default parameters (rather using default constructor).
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
Ptr<DescriptorExtractor>
|
|
|
|
createDescriptorExtractor( const string& descriptorExtractorType );
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{descriptorExtractorType}{Descriptor extractor type.}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
Now the following descriptor extractor types are supported ''SIFT'', ''SURF'',
|
|
|
|
''OpponentSIFT'', ''OpponentSURF'', ''BRIEF''.
|
|
|
|
|
|
|
|
\section{Common Interfaces of Descriptor Matchers}
|
|
|
|
Matchers of keypoint descriptors in OpenCV have wrappers with common interface that enables to switch easily
|
|
|
|
between different algorithms solving the same problem. This section is devoted to matching descriptors
|
|
|
|
that are represented as vectors in a multidimensional space. All objects that implement ''vector''
|
|
|
|
descriptor matchers inherit \cvCppCross{DescriptorMatcher} interface.
|
|
|
|
|
|
|
|
\cvclass{DMatch}
|
|
|
|
Match between two keypoint descriptors: query descriptor index,
|
|
|
|
train descriptor index, train image index and distance between descriptors.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
struct DMatch
|
|
|
|
{
|
|
|
|
DMatch() : queryIdx(-1), trainIdx(-1), imgIdx(-1),
|
|
|
|
distance(std::numeric_limits<float>::max()) {}
|
|
|
|
DMatch( int _queryIdx, int _trainIdx, float _distance ) :
|
|
|
|
queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(-1),
|
|
|
|
distance(_distance) {}
|
|
|
|
DMatch( int _queryIdx, int _trainIdx, int _imgIdx, float _distance ) :
|
|
|
|
queryIdx(_queryIdx), trainIdx(_trainIdx), imgIdx(_imgIdx),
|
|
|
|
distance(_distance) {}
|
|
|
|
|
|
|
|
int queryIdx; // query descriptor index
|
|
|
|
int trainIdx; // train descriptor index
|
|
|
|
int imgIdx; // train image index
|
|
|
|
|
|
|
|
float distance;
|
|
|
|
|
|
|
|
// less is better
|
|
|
|
bool operator<( const DMatch &m ) const;
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{DescriptorMatcher}
|
|
|
|
Abstract base class for matching keypoint descriptors. It has two groups
|
|
|
|
of match methods: for matching descriptors of one image with other image or
|
|
|
|
with image set.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class DescriptorMatcher
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
virtual ~DescriptorMatcher();
|
|
|
|
|
|
|
|
virtual void add( const vector<Mat>& descriptors );
|
|
|
|
|
|
|
|
const vector<Mat>& getTrainDescriptors() const;
|
|
|
|
virtual void clear();
|
|
|
|
bool empty() const;
|
|
|
|
virtual bool isMaskSupported() const = 0;
|
|
|
|
|
|
|
|
virtual void train();
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Group of methods to match descriptors from image pair.
|
|
|
|
*/
|
|
|
|
void match( const Mat& queryDescriptors, const Mat& trainDescriptors,
|
|
|
|
vector<DMatch>& matches, const Mat& mask=Mat() ) const;
|
|
|
|
void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
|
|
|
|
vector<vector<DMatch> >& matches, int k,
|
|
|
|
const Mat& mask=Mat(), bool compactResult=false ) const;
|
|
|
|
void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
|
|
|
|
vector<vector<DMatch> >& matches, float maxDistance,
|
|
|
|
const Mat& mask=Mat(), bool compactResult=false ) const;
|
|
|
|
/*
|
|
|
|
* Group of methods to match descriptors from one image to image set.
|
|
|
|
*/
|
|
|
|
void match( const Mat& queryDescriptors, vector<DMatch>& matches,
|
|
|
|
const vector<Mat>& masks=vector<Mat>() );
|
|
|
|
void knnMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches,
|
|
|
|
int k, const vector<Mat>& masks=vector<Mat>(),
|
|
|
|
bool compactResult=false );
|
|
|
|
void radiusMatch( const Mat& queryDescriptors, vector<vector<DMatch> >& matches,
|
|
|
|
float maxDistance, const vector<Mat>& masks=vector<Mat>(),
|
|
|
|
bool compactResult=false );
|
|
|
|
|
|
|
|
virtual void read( const FileNode& );
|
|
|
|
virtual void write( FileStorage& ) const;
|
|
|
|
|
|
|
|
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
vector<Mat> trainDescCollection;
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvCppFunc{DescriptorMatcher::add}
|
|
|
|
Add descriptors to train descriptor collection. If collection \texttt{trainDescCollection} is not empty
|
|
|
|
the new descriptors are added to existing train descriptors.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void add( const vector<Mat>\& descriptors );
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{descriptors}{Descriptors to add. Each \texttt{descriptors[i]} is a set of descriptors
|
|
|
|
from the same (one) train image.}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvCppFunc{DescriptorMatcher::getTrainDescriptors}
|
|
|
|
Returns constant link to the train descriptor collection (i.e. \texttt{trainDescCollection}).
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
const vector<Mat>\& getTrainDescriptors() const;
|
|
|
|
}
|
|
|
|
|
|
|
|
\cvCppFunc{DescriptorMatcher::clear}
|
|
|
|
Clear train descriptor collection.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void DescriptorMatcher::clear();
|
|
|
|
}
|
|
|
|
|
|
|
|
\cvCppFunc{DescriptorMatcher::empty}
|
|
|
|
Return true if there are not train descriptors in collection.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
bool DescriptorMatcher::empty() const;
|
|
|
|
}
|
|
|
|
|
|
|
|
\cvCppFunc{DescriptorMatcher::isMaskSupported}
|
|
|
|
Returns true if descriptor matcher supports masking permissible matches.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
bool DescriptorMatcher::isMaskSupported();
|
|
|
|
}
|
|
|
|
|
|
|
|
\cvCppFunc{DescriptorMatcher::train}
|
|
|
|
Train descriptor matcher (e.g. train flann index). In all methods to match the method train()
|
|
|
|
is run every time before matching. Some descriptor matchers (e.g. BruteForceMatcher) have empty
|
|
|
|
implementation of this method, other matchers realy train their inner structures (e.g. FlannBasedMatcher
|
|
|
|
trains flann::Index)
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void DescriptorMatcher::train();
|
|
|
|
}
|
|
|
|
|
|
|
|
\cvCppFunc{DescriptorMatcher::match}
|
|
|
|
Find the best match for each descriptor from a query set with train descriptors.
|
|
|
|
Supposed that the query descriptors are of keypoints detected on the same query image.
|
|
|
|
In first variant of this method train descriptors are set as input argument and
|
|
|
|
supposed that they are of keypoints detected on the same train image. In second variant
|
|
|
|
of the method train descriptors collection that was set using \texttt{add} method is used.
|
|
|
|
Optional mask (or masks) can be set to describe which descriptors can be matched.
|
|
|
|
\texttt{queryDescriptors[i]} can be matched with \texttt{trainDescriptors[j]} only if
|
|
|
|
\texttt{mask.at<uchar>(i,j)} is non-zero.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void DescriptorMatcher::match( const Mat\& queryDescriptors,
|
|
|
|
\par const Mat\& trainDescriptors,
|
|
|
|
\par vector<DMatch>\& matches,
|
|
|
|
\par const Mat\& mask=Mat() ) const;
|
|
|
|
}
|
|
|
|
\cvdefCpp{
|
|
|
|
void DescriptorMatcher::match( const Mat\& queryDescriptors,
|
|
|
|
\par vector<DMatch>\& matches,
|
|
|
|
\par const vector<Mat>\& masks=vector<Mat>() );
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{queryDescriptors}{Query set of descriptors.}
|
|
|
|
\cvarg{trainDescriptors}{Train set of descriptors. This will not be added to train descriptors collection
|
|
|
|
stored in class object.}
|
|
|
|
\cvarg{matches}{Matches. If some query descriptor masked out in \texttt{mask} no match will be added for this descriptor.
|
|
|
|
So \texttt{matches} size may be less query descriptors count.}
|
|
|
|
\cvarg{mask}{Mask specifying permissible matches between input query and train matrices of descriptors.}
|
|
|
|
\cvarg{masks}{The set of masks. Each \texttt{masks[i]} specifies permissible matches between input query descriptors
|
|
|
|
and stored train descriptors from i-th image (i.e. \texttt{trainDescCollection[i])}.}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvCppFunc{DescriptorMatcher::knnMatch}
|
|
|
|
Find the k best matches for each descriptor from a query set with train descriptors.
|
|
|
|
Found k (or less if not possible) matches are returned in distance increasing order.
|
|
|
|
Details about query and train descriptors see in \cvCppCross{DescriptorMatcher::match}.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void DescriptorMatcher::knnMatch( const Mat\& queryDescriptors,
|
|
|
|
\par const Mat\& trainDescriptors,
|
|
|
|
\par vector<vector<DMatch> >\& matches,
|
|
|
|
\par int k, const Mat\& mask=Mat(),
|
|
|
|
\par bool compactResult=false ) const;
|
|
|
|
}
|
|
|
|
\cvdefCpp{
|
|
|
|
void DescriptorMatcher::knnMatch( const Mat\& queryDescriptors,
|
|
|
|
\par vector<vector<DMatch> >\& matches, int k,
|
|
|
|
\par const vector<Mat>\& masks=vector<Mat>(),
|
|
|
|
\par bool compactResult=false );
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{queryDescriptors, trainDescriptors, mask, masks}{See in \cvCppCross{DescriptorMatcher::match}.}
|
|
|
|
\cvarg{matches}{Mathes. Each \texttt{matches[i]} is k or less matches for the same query descriptor.}
|
|
|
|
\cvarg{k}{Count of best matches will be found per each query descriptor (or less if it's not possible).}
|
|
|
|
\cvarg{compactResult}{It's used when mask (or masks) is not empty. If \texttt{compactResult} is false
|
|
|
|
\texttt{matches} vector will have the same size as \texttt{queryDescriptors} rows. If \texttt{compactResult}
|
|
|
|
is true \texttt{matches} vector will not contain matches for fully masked out query descriptors.}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvCppFunc{DescriptorMatcher::radiusMatch}
|
|
|
|
Find the best matches for each query descriptor which have distance less than given threshold.
|
|
|
|
Found matches are returned in distance increasing order. Details about query and train
|
|
|
|
descriptors see in \cvCppCross{DescriptorMatcher::match}.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void DescriptorMatcher::radiusMatch( const Mat\& queryDescriptors,
|
|
|
|
\par const Mat\& trainDescriptors,
|
|
|
|
\par vector<vector<DMatch> >\& matches,
|
|
|
|
\par float maxDistance, const Mat\& mask=Mat(),
|
|
|
|
\par bool compactResult=false ) const;
|
|
|
|
}
|
|
|
|
\cvdefCpp{
|
|
|
|
void DescriptorMatcher::radiusMatch( const Mat\& queryDescriptors,
|
|
|
|
\par vector<vector<DMatch> >\& matches,
|
|
|
|
\par float maxDistance,
|
|
|
|
\par const vector<Mat>\& masks=vector<Mat>(),
|
|
|
|
\par bool compactResult=false );
|
|
|
|
}
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{queryDescriptors, trainDescriptors, mask, masks}{See in \cvCppCross{DescriptorMatcher::match}.}
|
|
|
|
\cvarg{matches, compactResult}{See in \cvCppCross{DescriptorMatcher::knnMatch}.}
|
|
|
|
\cvarg{maxDistance}{The threshold to found match distances.}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvCppFunc{DescriptorMatcher::clone}
|
|
|
|
Clone the matcher.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
Ptr<DescriptorMatcher> \\
|
|
|
|
DescriptorMatcher::clone( bool emptyTrainData ) const;
|
|
|
|
}
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{emptyTrainData}{If emptyTrainData is false the method create deep copy of the object, i.e. copies
|
|
|
|
both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
|
|
|
|
but with empty train data..}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvclass{BruteForceMatcher}
|
|
|
|
Brute-force descriptor matcher. For each descriptor in the first set, this matcher finds the closest
|
|
|
|
descriptor in the second set by trying each one. This descriptor matcher supports masking
|
|
|
|
permissible matches between descriptor sets.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
template<class Distance>
|
|
|
|
class BruteForceMatcher : public DescriptorMatcher
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
BruteForceMatcher( Distance d = Distance() );
|
|
|
|
virtual ~BruteForceMatcher();
|
|
|
|
|
|
|
|
virtual bool isMaskSupported() const;
|
|
|
|
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
}
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
For efficiency, BruteForceMatcher is templated on the distance metric.
|
|
|
|
For float descriptors, a common choice would be \texttt{L2<float>}. Class of supported distances are:
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
template<typename T>
|
|
|
|
struct Accumulator
|
|
|
|
{
|
|
|
|
typedef T Type;
|
|
|
|
};
|
|
|
|
|
|
|
|
template<> struct Accumulator<unsigned char> { typedef unsigned int Type; };
|
|
|
|
template<> struct Accumulator<unsigned short> { typedef unsigned int Type; };
|
|
|
|
template<> struct Accumulator<char> { typedef int Type; };
|
|
|
|
template<> struct Accumulator<short> { typedef int Type; };
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Squared Euclidean distance functor
|
|
|
|
*/
|
|
|
|
template<class T>
|
|
|
|
struct L2
|
|
|
|
{
|
|
|
|
typedef T ValueType;
|
|
|
|
typedef typename Accumulator<T>::Type ResultType;
|
|
|
|
|
|
|
|
ResultType operator()( const T* a, const T* b, int size ) const;
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Manhattan distance (city block distance) functor
|
|
|
|
*/
|
|
|
|
template<class T>
|
|
|
|
struct CV_EXPORTS L1
|
|
|
|
{
|
|
|
|
typedef T ValueType;
|
|
|
|
typedef typename Accumulator<T>::Type ResultType;
|
|
|
|
|
|
|
|
ResultType operator()( const T* a, const T* b, int size ) const;
|
|
|
|
...
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Hamming distance (city block distance) functor
|
|
|
|
*/
|
|
|
|
struct HammingLUT
|
|
|
|
{
|
|
|
|
typedef unsigned char ValueType;
|
|
|
|
typedef int ResultType;
|
|
|
|
|
|
|
|
ResultType operator()( const unsigned char* a, const unsigned char* b,
|
|
|
|
int size ) const;
|
|
|
|
...
|
|
|
|
};
|
|
|
|
|
|
|
|
struct Hamming
|
|
|
|
{
|
|
|
|
typedef unsigned char ValueType;
|
|
|
|
typedef int ResultType;
|
|
|
|
|
|
|
|
ResultType operator()( const unsigned char* a, const unsigned char* b,
|
|
|
|
int size ) const;
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{FlannBasedMatcher}
|
|
|
|
Flann based descriptor matcher. This matcher trains \cvCppCross{flann::Index} on
|
|
|
|
train descriptor collection and calls it's nearest search methods to find best matches.
|
|
|
|
So this matcher may be faster in cases of matching to large train collection than
|
|
|
|
brute force matcher. \texttt{FlannBasedMatcher} does not support masking permissible
|
|
|
|
matches between descriptor sets, because \cvCppCross{flann::Index} does not
|
|
|
|
support this.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class FlannBasedMatcher : public DescriptorMatcher
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
FlannBasedMatcher(
|
|
|
|
const Ptr<flann::IndexParams>& indexParams=new flann::KDTreeIndexParams(),
|
|
|
|
const Ptr<flann::SearchParams>& searchParams=new flann::SearchParams() );
|
|
|
|
|
|
|
|
virtual void add( const vector<Mat>& descriptors );
|
|
|
|
virtual void clear();
|
|
|
|
|
|
|
|
virtual void train();
|
|
|
|
virtual bool isMaskSupported() const;
|
|
|
|
|
|
|
|
virtual Ptr<DescriptorMatcher> clone( bool emptyTrainData=false ) const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvCppFunc{createDescriptorMatcher}
|
|
|
|
Descriptor matcher factory that creates \cvCppCross{DescriptorMatcher} of
|
|
|
|
given type with default parameters (rather using default constructor).
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
Ptr<DescriptorMatcher> createDescriptorMatcher( const string& descriptorMatcherType );
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{descriptorMatcherType}{Descriptor matcher type.}
|
|
|
|
\end{description}
|
|
|
|
Now the following matcher types are supported: ''BruteForce'' (it uses L2), ''BruteForce-L1'',
|
|
|
|
''BruteForce-Hamming'', ''BruteForce-HammingLUT''.
|
|
|
|
|
|
|
|
\section{Common Interfaces of Generic Descriptor Matchers}
|
|
|
|
Matchers of keypoint descriptors in OpenCV have wrappers with common interface that enables to switch easily
|
|
|
|
between different algorithms solving the same problem. This section is devoted to matching descriptors
|
|
|
|
that can not be represented as vectors in a multidimensional space. \texttt{GenericDescriptorMatcher}
|
|
|
|
is a more generic interface for descriptors. It does not make any assumptions about descriptor representation.
|
|
|
|
Every descriptor with \cvCppCross{DescriptorExtractor} interface has a wrapper with
|
|
|
|
\texttt{GenericDescriptorMatcher} interface (see \cvCppCross{VectorDescriptorMatcher}).
|
|
|
|
There are descriptors such as One way descriptor and Ferns that have \texttt{GenericDescriptorMatcher}
|
|
|
|
interface implemented, but do not support \cvCppCross{DescriptorExtractor}.
|
|
|
|
|
|
|
|
\cvclass{GenericDescriptorMatcher}
|
|
|
|
Abstract interface for a keypoint descriptor extracting and matching.
|
|
|
|
There is \cvCppCross{DescriptorExtractor} and \cvCppCross{DescriptorMatcher}
|
|
|
|
for these purposes too, but their interfaces are intended for descriptors
|
|
|
|
represented as vectors in a multidimensional space. \texttt{GenericDescriptorMatcher}
|
|
|
|
is a more generic interface for descriptors.
|
|
|
|
As \cvCppCross{DescriptorMatcher}, \texttt{GenericDescriptorMatcher} has two groups
|
|
|
|
of match methods: for matching keypoints of one image with other image or
|
|
|
|
with image set.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class GenericDescriptorMatcher
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
GenericDescriptorMatcher();
|
|
|
|
virtual ~GenericDescriptorMatcher();
|
|
|
|
|
|
|
|
virtual void add( const vector<Mat>& images,
|
|
|
|
vector<vector<KeyPoint> >& keypoints );
|
|
|
|
|
|
|
|
const vector<Mat>& getTrainImages() const;
|
|
|
|
const vector<vector<KeyPoint> >& getTrainKeypoints() const;
|
|
|
|
virtual void clear();
|
|
|
|
|
|
|
|
virtual void train() = 0;
|
|
|
|
|
|
|
|
virtual bool isMaskSupported() = 0;
|
|
|
|
|
|
|
|
void classify( const Mat& queryImage,
|
|
|
|
vector<KeyPoint>& queryKeypoints,
|
|
|
|
const Mat& trainImage,
|
|
|
|
vector<KeyPoint>& trainKeypoints ) const;
|
|
|
|
void classify( const Mat& queryImage,
|
|
|
|
vector<KeyPoint>& queryKeypoints );
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Group of methods to match keypoints from image pair.
|
|
|
|
*/
|
|
|
|
void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
|
|
|
|
const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
|
|
|
|
vector<DMatch>& matches, const Mat& mask=Mat() ) const;
|
|
|
|
void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
|
|
|
|
const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
|
|
|
|
vector<vector<DMatch> >& matches, int k,
|
|
|
|
const Mat& mask=Mat(), bool compactResult=false ) const;
|
|
|
|
void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
|
|
|
|
const Mat& trainImage, vector<KeyPoint>& trainKeypoints,
|
|
|
|
vector<vector<DMatch> >& matches, float maxDistance,
|
|
|
|
const Mat& mask=Mat(), bool compactResult=false ) const;
|
|
|
|
/*
|
|
|
|
* Group of methods to match keypoints from one image to image set.
|
|
|
|
*/
|
|
|
|
void match( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
|
|
|
|
vector<DMatch>& matches, const vector<Mat>& masks=vector<Mat>() );
|
|
|
|
void knnMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
|
|
|
|
vector<vector<DMatch> >& matches, int k,
|
|
|
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
|
|
|
|
void radiusMatch( const Mat& queryImage, vector<KeyPoint>& queryKeypoints,
|
|
|
|
vector<vector<DMatch> >& matches, float maxDistance,
|
|
|
|
const vector<Mat>& masks=vector<Mat>(), bool compactResult=false );
|
|
|
|
|
|
|
|
virtual void read( const FileNode& );
|
|
|
|
virtual void write( FileStorage& ) const;
|
|
|
|
|
|
|
|
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const = 0;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::add}
|
|
|
|
Adds images and keypoints from them to the train collection (descriptors are supposed to be calculated here).
|
|
|
|
If train collection is not empty new image and keypoints from them will be added to
|
|
|
|
existing data.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void GenericDescriptorMatcher::add( const vector<Mat>\& images,
|
|
|
|
\par vector<vector<KeyPoint> >\& keypoints );
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{images}{Image collection.}
|
|
|
|
\cvarg{keypoints}{Point collection. Assumes that \texttt{keypoints[i]} are keypoints
|
|
|
|
detected in an image \texttt{images[i]}. }
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::getTrainImages}
|
|
|
|
Returns train image collection.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
const vector<Mat>& GenericDescriptorMatcher::getTrainImages() const;
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::getTrainKeypoints}
|
|
|
|
Returns train keypoints collection.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
const vector<vector<KeyPoint> >&
|
|
|
|
GenericDescriptorMatcher::getTrainKeypoints() const;
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::clear}
|
|
|
|
Clear train collection (iamges and keypoints).
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
void GenericDescriptorMatcher::clear();
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::train}
|
|
|
|
Train the object, e.g. tree-based structure to extract descriptors or
|
|
|
|
to optimize descriptors matching.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
void GenericDescriptorMatcher::train();
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::isMaskSupported}
|
|
|
|
Returns true if generic descriptor matcher supports masking permissible matches.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
void GenericDescriptorMatcher::isMaskSupported();
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::classify}
|
|
|
|
Classifies query keypoints under keypoints of one train image qiven as input argument
|
|
|
|
(first version of the method) or train image collection that set using
|
|
|
|
\cvCppCross{GenericDescriptorMatcher::add} (second version).
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void GenericDescriptorMatcher::classify( \par const Mat\& queryImage,
|
|
|
|
\par vector<KeyPoint>\& queryKeypoints,
|
|
|
|
\par const Mat\& trainImage,
|
|
|
|
\par vector<KeyPoint>\& trainKeypoints ) const;
|
|
|
|
}
|
|
|
|
\cvdefCpp{
|
|
|
|
void GenericDescriptorMatcher::classify( const Mat\& queryImage,
|
|
|
|
\par vector<KeyPoint>\& queryKeypoints );
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{queryImage}{The query image.}
|
|
|
|
\cvarg{queryKeypoints}{Keypoints from the query image.}
|
|
|
|
\cvarg{trainImage}{The train image.}
|
|
|
|
\cvarg{trainKeypoints}{Keypoints from the train image.}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::match}
|
|
|
|
Find best match for query keypoints to the training set. In first version of method
|
|
|
|
one train image and keypoints detected on it - are input arguments. In second version
|
|
|
|
query keypoints are matched to training collectin that set using
|
|
|
|
\cvCppCross{GenericDescriptorMatcher::add}. As in \cvCppCross{DescriptorMatcher::match}
|
|
|
|
the mask can be set.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void GenericDescriptorMatcher::match(
|
|
|
|
\par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints,
|
|
|
|
\par const Mat\& trainImage, vector<KeyPoint>\& trainKeypoints,
|
|
|
|
\par vector<DMatch>\& matches, const Mat\& mask=Mat() ) const;
|
|
|
|
}
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void GenericDescriptorMatcher::match(
|
|
|
|
\par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints,
|
|
|
|
\par vector<DMatch>\& matches,
|
|
|
|
\par const vector<Mat>\& masks=vector<Mat>() );
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{queryImage}{Query image.}
|
|
|
|
\cvarg{queryKeypoints}{Keypoints detected in \texttt{queryImage}.}
|
|
|
|
\cvarg{trainImage}{Train image. This will not be added to train image collection
|
|
|
|
stored in class object.}
|
|
|
|
\cvarg{trainKeypoints}{Keypoints detected in \texttt{trainImage}. They will not be added to train points collection
|
|
|
|
stored in class object.}
|
|
|
|
\cvarg{matches}{Matches. If some query descriptor (keypoint) masked out in \texttt{mask}
|
|
|
|
no match will be added for this descriptor.
|
|
|
|
So \texttt{matches} size may be less query keypoints count.}
|
|
|
|
\cvarg{mask}{Mask specifying permissible matches between input query and train keypoints.}
|
|
|
|
\cvarg{masks}{The set of masks. Each \texttt{masks[i]} specifies permissible matches between input query keypoints
|
|
|
|
and stored train keypointss from i-th image.}
|
|
|
|
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::knnMatch}
|
|
|
|
Find the knn best matches for each keypoint from a query set with train keypoints.
|
|
|
|
Found knn (or less if not possible) matches are returned in distance increasing order.
|
|
|
|
Details see in \cvCppCross{GenericDescriptorMatcher::match} and \cvCppCross{DescriptorMatcher::knnMatch}.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void GenericDescriptorMatcher::knnMatch(
|
|
|
|
\par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints,
|
|
|
|
\par const Mat\& trainImage, vector<KeyPoint>\& trainKeypoints,
|
|
|
|
\par vector<vector<DMatch> >\& matches, int k,
|
|
|
|
\par const Mat\& mask=Mat(), bool compactResult=false ) const;
|
|
|
|
}
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void GenericDescriptorMatcher::knnMatch(
|
|
|
|
\par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints,
|
|
|
|
\par vector<vector<DMatch> >\& matches, int k,
|
|
|
|
\par const vector<Mat>\& masks=vector<Mat>(),
|
|
|
|
\par bool compactResult=false );
|
|
|
|
}
|
|
|
|
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::radiusMatch}
|
|
|
|
Find the best matches for each query keypoint which have distance less than given threshold.
|
|
|
|
Found matches are returned in distance increasing order. Details see in
|
|
|
|
\cvCppCross{GenericDescriptorMatcher::match} and \cvCppCross{DescriptorMatcher::radiusMatch}.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void GenericDescriptorMatcher::radiusMatch(
|
|
|
|
\par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints,
|
|
|
|
\par const Mat\& trainImage, vector<KeyPoint>\& trainKeypoints,
|
|
|
|
\par vector<vector<DMatch> >\& matches, float maxDistance,
|
|
|
|
\par const Mat\& mask=Mat(), bool compactResult=false ) const;
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
\cvdefCpp{
|
|
|
|
void GenericDescriptorMatcher::radiusMatch(
|
|
|
|
\par const Mat\& queryImage, vector<KeyPoint>\& queryKeypoints,
|
|
|
|
\par vector<vector<DMatch> >\& matches, float maxDistance,
|
|
|
|
\par const vector<Mat>\& masks=vector<Mat>(),
|
|
|
|
\par bool compactResult=false );
|
|
|
|
}
|
|
|
|
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::read}
|
|
|
|
Reads matcher object from a file node.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void GenericDescriptorMatcher::read( const FileNode\& fn );
|
|
|
|
}
|
|
|
|
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::write}
|
|
|
|
Writes match object to a file storage
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void GenericDescriptorMatcher::write( FileStorage\& fs ) const;
|
|
|
|
}
|
|
|
|
|
|
|
|
\cvCppFunc{GenericDescriptorMatcher::clone}
|
|
|
|
Clone the matcher.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
Ptr<GenericDescriptorMatcher>\\
|
|
|
|
GenericDescriptorMatcher::clone( bool emptyTrainData ) const;
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{emptyTrainData}{If emptyTrainData is false the method create deep copy of the object, i.e. copies
|
|
|
|
both parameters and train data. If emptyTrainData is true the method create object copy with current parameters
|
|
|
|
but with empty train data.}
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\cvclass{OneWayDescriptorMatcher}
|
|
|
|
Wrapping class for computing, matching and classification of descriptors using \cvCppCross{OneWayDescriptorBase} class.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class OneWayDescriptorMatcher : public GenericDescriptorMatcher
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
class Params
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
static const int POSE_COUNT = 500;
|
|
|
|
static const int PATCH_WIDTH = 24;
|
|
|
|
static const int PATCH_HEIGHT = 24;
|
|
|
|
static float GET_MIN_SCALE() { return 0.7f; }
|
|
|
|
static float GET_MAX_SCALE() { return 1.5f; }
|
|
|
|
static float GET_STEP_SCALE() { return 1.2f; }
|
|
|
|
|
|
|
|
Params( int poseCount = POSE_COUNT,
|
|
|
|
Size patchSize = Size(PATCH_WIDTH, PATCH_HEIGHT),
|
|
|
|
string pcaFilename = string(),
|
|
|
|
string trainPath = string(), string trainImagesList = string(),
|
|
|
|
float minScale = GET_MIN_SCALE(), float maxScale = GET_MAX_SCALE(),
|
|
|
|
float stepScale = GET_STEP_SCALE() );
|
|
|
|
|
|
|
|
int poseCount;
|
|
|
|
Size patchSize;
|
|
|
|
string pcaFilename;
|
|
|
|
string trainPath;
|
|
|
|
string trainImagesList;
|
|
|
|
|
|
|
|
float minScale, maxScale, stepScale;
|
|
|
|
};
|
|
|
|
|
|
|
|
OneWayDescriptorMatcher( const Params& params=Params() );
|
|
|
|
virtual ~OneWayDescriptorMatcher();
|
|
|
|
|
|
|
|
void initialize( const Params& params, const Ptr<OneWayDescriptorBase>& base=Ptr<OneWayDescriptorBase>() );
|
|
|
|
|
|
|
|
// Clears keypoints storing in collection and OneWayDescriptorBase
|
|
|
|
virtual void clear();
|
|
|
|
|
|
|
|
virtual void train();
|
|
|
|
|
|
|
|
virtual bool isMaskSupported();
|
|
|
|
|
|
|
|
virtual void read( const FileNode &fn );
|
|
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
|
|
|
|
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{FernDescriptorMatcher}
|
|
|
|
Wrapping class for computing, matching and classification of descriptors using \cvCppCross{FernClassifier} class.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class FernDescriptorMatcher : public GenericDescriptorMatcher
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
class Params
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
Params( int nclasses=0,
|
|
|
|
int patchSize=FernClassifier::PATCH_SIZE,
|
|
|
|
int signatureSize=FernClassifier::DEFAULT_SIGNATURE_SIZE,
|
|
|
|
int nstructs=FernClassifier::DEFAULT_STRUCTS,
|
|
|
|
int structSize=FernClassifier::DEFAULT_STRUCT_SIZE,
|
|
|
|
int nviews=FernClassifier::DEFAULT_VIEWS,
|
|
|
|
int compressionMethod=FernClassifier::COMPRESSION_NONE,
|
|
|
|
const PatchGenerator& patchGenerator=PatchGenerator() );
|
|
|
|
|
|
|
|
Params( const string& filename );
|
|
|
|
|
|
|
|
int nclasses;
|
|
|
|
int patchSize;
|
|
|
|
int signatureSize;
|
|
|
|
int nstructs;
|
|
|
|
int structSize;
|
|
|
|
int nviews;
|
|
|
|
int compressionMethod;
|
|
|
|
PatchGenerator patchGenerator;
|
|
|
|
|
|
|
|
string filename;
|
|
|
|
};
|
|
|
|
|
|
|
|
FernDescriptorMatcher( const Params& params=Params() );
|
|
|
|
virtual ~FernDescriptorMatcher();
|
|
|
|
|
|
|
|
virtual void clear();
|
|
|
|
|
|
|
|
virtual void train();
|
|
|
|
|
|
|
|
virtual bool isMaskSupported();
|
|
|
|
|
|
|
|
virtual void read( const FileNode &fn );
|
|
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
|
|
|
|
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvclass{VectorDescriptorMatcher}
|
|
|
|
Class used for matching descriptors that can be described as vectors in a finite-dimensional space.
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
class CV_EXPORTS VectorDescriptorMatcher : public GenericDescriptorMatcher
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
VectorDescriptorMatcher( const Ptr<DescriptorExtractor>& extractor, const Ptr<DescriptorMatcher>& matcher );
|
|
|
|
virtual ~VectorDescriptorMatcher();
|
|
|
|
|
|
|
|
virtual void add( const vector<Mat>& imgCollection,
|
|
|
|
vector<vector<KeyPoint> >& pointCollection );
|
|
|
|
virtual void clear();
|
|
|
|
virtual void train();
|
|
|
|
virtual bool isMaskSupported();
|
|
|
|
|
|
|
|
virtual void read( const FileNode& fn );
|
|
|
|
virtual void write( FileStorage& fs ) const;
|
|
|
|
|
|
|
|
virtual Ptr<GenericDescriptorMatcher> clone( bool emptyTrainData=false ) const;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
...
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
Example of creating:
|
|
|
|
\begin{lstlisting}
|
|
|
|
VectorDescriptorMatcher matcher( new SurfDescriptorExtractor,
|
|
|
|
new BruteForceMatcher<L2<float> > );
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\section{Drawing Function of Keypoints and Matches}
|
|
|
|
\cvCppFunc{drawMatches}
|
|
|
|
This function draws matches of keypints from two images on output image.
|
|
|
|
Match is a line connecting two keypoints (circles).
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void drawMatches( const Mat\& img1, const vector<KeyPoint>\& keypoints1,
|
|
|
|
\par const Mat\& img2, const vector<KeyPoint>\& keypoints2,
|
|
|
|
\par const vector<DMatch>\& matches1to2, Mat\& outImg,
|
|
|
|
\par const Scalar\& matchColor=Scalar::all(-1),
|
|
|
|
\par const Scalar\& singlePointColor=Scalar::all(-1),
|
|
|
|
\par const vector<char>\& matchesMask=vector<char>(),
|
|
|
|
\par int flags=DrawMatchesFlags::DEFAULT );
|
|
|
|
}
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void drawMatches( const Mat\& img1, const vector<KeyPoint>\& keypoints1,
|
|
|
|
\par const Mat\& img2, const vector<KeyPoint>\& keypoints2,
|
|
|
|
\par const vector<vector<DMatch> >\& matches1to2, Mat\& outImg,
|
|
|
|
\par const Scalar\& matchColor=Scalar::all(-1),
|
|
|
|
\par const Scalar\& singlePointColor=Scalar::all(-1),
|
|
|
|
\par const vector<vector<char>>\& matchesMask=
|
|
|
|
\par vector<vector<char> >(),
|
|
|
|
\par int flags=DrawMatchesFlags::DEFAULT );
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{img1}{First source image.}
|
|
|
|
\cvarg{keypoints1}{Keypoints from first source image.}
|
|
|
|
\cvarg{img2}{Second source image.}
|
|
|
|
\cvarg{keypoints2}{Keypoints from second source image.}
|
|
|
|
\cvarg{matches}{Matches from first image to second one, i.e. \texttt{keypoints1[i]}
|
|
|
|
has corresponding point \texttt{keypoints2[matches[i]]}. }
|
|
|
|
\cvarg{outImg}{Output image. Its content depends on \texttt{flags} value
|
|
|
|
what is drawn in output image. See below possible \texttt{flags} bit values. }
|
|
|
|
\cvarg{matchColor}{Color of matches (lines and connected keypoints).
|
|
|
|
If \texttt{matchColor==Scalar::all(-1)} color will be generated randomly.}
|
|
|
|
\cvarg{singlePointColor}{Color of single keypoints (circles), i.e. keypoints not having the matches.
|
|
|
|
If \texttt{singlePointColor==Scalar::all(-1)} color will be generated randomly.}
|
|
|
|
\cvarg{matchesMask}{Mask determining which matches will be drawn. If mask is empty all matches will be drawn. }
|
|
|
|
\cvarg{flags}{Each bit of \texttt{flags} sets some feature of drawing.
|
|
|
|
Possible \texttt{flags} bit values is defined by \texttt{DrawMatchesFlags}, see below. }
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\begin{lstlisting}
|
|
|
|
struct DrawMatchesFlags
|
|
|
|
{
|
|
|
|
enum{ DEFAULT = 0, // Output image matrix will be created (Mat::create),
|
|
|
|
// i.e. existing memory of output image may be reused.
|
|
|
|
// Two source image, matches and single keypoints
|
|
|
|
// will be drawn.
|
|
|
|
// For each keypoint only the center point will be
|
|
|
|
// drawn (without the circle around keypoint with
|
|
|
|
// keypoint size and orientation).
|
|
|
|
DRAW_OVER_OUTIMG = 1, // Output image matrix will not be
|
|
|
|
// created (Mat::create). Matches will be drawn
|
|
|
|
// on existing content of output image.
|
|
|
|
NOT_DRAW_SINGLE_POINTS = 2, // Single keypoints will not be drawn.
|
|
|
|
DRAW_RICH_KEYPOINTS = 4 // For each keypoint the circle around
|
|
|
|
// keypoint with keypoint size and orientation will
|
|
|
|
// be drawn.
|
|
|
|
};
|
|
|
|
};
|
|
|
|
\end{lstlisting}
|
|
|
|
|
|
|
|
\cvCppFunc{drawKeypoints}
|
|
|
|
Draw keypoints.
|
|
|
|
|
|
|
|
\cvdefCpp{
|
|
|
|
void drawKeypoints( const Mat\& image,
|
|
|
|
\par const vector<KeyPoint>\& keypoints,
|
|
|
|
\par Mat\& outImg, const Scalar\& color=Scalar::all(-1),
|
|
|
|
\par int flags=DrawMatchesFlags::DEFAULT );
|
|
|
|
}
|
|
|
|
|
|
|
|
\begin{description}
|
|
|
|
\cvarg{image}{Source image.}
|
|
|
|
\cvarg{keypoints}{Keypoints from source image.}
|
|
|
|
\cvarg{outImg}{Output image. Its content depends on \texttt{flags} value
|
|
|
|
what is drawn in output image. See possible \texttt{flags} bit values. }
|
|
|
|
\cvarg{color}{Color of keypoints}.
|
|
|
|
\cvarg{flags}{Each bit of \texttt{flags} sets some feature of drawing.
|
|
|
|
Possible \texttt{flags} bit values is defined by \texttt{DrawMatchesFlags},
|
|
|
|
see above in \cvCppCross{drawMatches}. }
|
|
|
|
\end{description}
|
|
|
|
|
|
|
|
\fi
|