Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2127 lines
57 KiB

//warning number '5033' not a valid compiler warning in vc12
#if defined(_MSC_VER) && (_MSC_VER > 1800)
// eliminating duplicated round() declaration
#define HAVE_ROUND 1
#pragma warning(push)
#pragma warning(disable:5033) // 'register' is no longer a supported storage class
#endif
// #define CVPY_DYNAMIC_INIT
// #define Py_DEBUG
#if defined(CVPY_DYNAMIC_INIT) && !defined(Py_DEBUG)
# define Py_LIMITED_API 0x03030000
#endif
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
#include <cmath>
#include <Python.h>
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
#include <limits>
#if PY_MAJOR_VERSION < 3
#undef CVPY_DYNAMIC_INIT
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
#else
#define CV_PYTHON_3 1
#endif
#if defined(_MSC_VER) && (_MSC_VER > 1800)
#pragma warning(pop)
#endif
#define MODULESTR "cv2"
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
#include <numpy/ndarrayobject.h>
#include "opencv2/core/utils/configuration.private.hpp"
#include "opencv2/core/utils/logger.hpp"
#include "pyopencv_generated_include.h"
#include "opencv2/core/types_c.h"
#include "opencv2/opencv_modules.hpp"
#include "pycompat.hpp"
#include <map>
#include <type_traits> // std::enable_if
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
#define CV_HAS_CONVERSION_ERROR(x) (((x) == -1) && PyErr_Occurred())
class ArgInfo
{
public:
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
const char* name;
bool outputarg;
// more fields may be added if necessary
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
ArgInfo(const char* name_, bool outputarg_) : name(name_), outputarg(outputarg_) {}
private:
ArgInfo(const ArgInfo&) = delete;
ArgInfo& operator=(const ArgInfo&) = delete;
};
template<typename T, class TEnable = void> // TEnable is used for SFINAE checks
struct PyOpenCV_Converter
{
//static inline bool to(PyObject* obj, T& p, const ArgInfo& info);
//static inline PyObject* from(const T& src);
};
template<typename T> static
bool pyopencv_to(PyObject* obj, T& p, const ArgInfo& info) { return PyOpenCV_Converter<T>::to(obj, p, info); }
template<typename T> static
PyObject* pyopencv_from(const T& src) { return PyOpenCV_Converter<T>::from(src); }
static PyObject* opencv_error = NULL;
static bool isPythonBindingsDebugEnabled()
{
static bool param_debug = cv::utils::getConfigurationParameterBool("OPENCV_PYTHON_DEBUG", false);
return param_debug;
}
static void emit_failmsg(PyObject * exc, const char *msg)
{
static bool param_debug = isPythonBindingsDebugEnabled();
if (param_debug)
{
CV_LOG_WARNING(NULL, "Bindings conversion failed: " << msg);
}
PyErr_SetString(exc, msg);
}
static int failmsg(const char *fmt, ...)
{
char str[1000];
va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);
emit_failmsg(PyExc_TypeError, str);
return 0;
}
static PyObject* failmsgp(const char *fmt, ...)
{
char str[1000];
va_list ap;
va_start(ap, fmt);
vsnprintf(str, sizeof(str), fmt, ap);
va_end(ap);
emit_failmsg(PyExc_TypeError, str);
return 0;
}
class PyAllowThreads
{
public:
PyAllowThreads() : _state(PyEval_SaveThread()) {}
~PyAllowThreads()
{
PyEval_RestoreThread(_state);
}
private:
PyThreadState* _state;
};
13 years ago
class PyEnsureGIL
{
public:
PyEnsureGIL() : _state(PyGILState_Ensure()) {}
~PyEnsureGIL()
13 years ago
{
PyGILState_Release(_state);
}
private:
PyGILState_STATE _state;
};
static void pyRaiseCVException(const cv::Exception &e)
{
PyObject_SetAttrString(opencv_error, "file", PyString_FromString(e.file.c_str()));
PyObject_SetAttrString(opencv_error, "func", PyString_FromString(e.func.c_str()));
PyObject_SetAttrString(opencv_error, "line", PyInt_FromLong(e.line));
PyObject_SetAttrString(opencv_error, "code", PyInt_FromLong(e.code));
PyObject_SetAttrString(opencv_error, "msg", PyString_FromString(e.msg.c_str()));
PyObject_SetAttrString(opencv_error, "err", PyString_FromString(e.err.c_str()));
PyErr_SetString(opencv_error, e.what());
}
#define ERRWRAP2(expr) \
try \
{ \
PyAllowThreads allowThreads; \
expr; \
} \
catch (const cv::Exception &e) \
{ \
pyRaiseCVException(e); \
return 0; \
}
using namespace cv;
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
namespace {
template<class T>
NPY_TYPES asNumpyType()
{
return NPY_OBJECT;
}
template<>
NPY_TYPES asNumpyType<bool>()
{
return NPY_BOOL;
}
#define CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(src, dst) \
template<> \
NPY_TYPES asNumpyType<src>() \
{ \
return NPY_##dst; \
} \
template<> \
NPY_TYPES asNumpyType<u##src>() \
{ \
return NPY_U##dst; \
}
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int8_t, INT8);
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int16_t, INT16);
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int32_t, INT32);
CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION(int64_t, INT64);
#undef CV_GENERATE_INTEGRAL_TYPE_NPY_CONVERSION
template<>
NPY_TYPES asNumpyType<float>()
{
return NPY_FLOAT;
}
template<>
NPY_TYPES asNumpyType<double>()
{
return NPY_DOUBLE;
}
template <class T>
PyArray_Descr* getNumpyTypeDescriptor()
{
return PyArray_DescrFromType(asNumpyType<T>());
}
template <>
PyArray_Descr* getNumpyTypeDescriptor<size_t>()
{
#if SIZE_MAX == ULONG_MAX
return PyArray_DescrFromType(NPY_ULONG);
#elif SIZE_MAX == ULLONG_MAX
return PyArray_DescrFromType(NPY_ULONGLONG);
#else
return PyArray_DescrFromType(NPY_UINT);
#endif
}
template <class T, class U>
bool isRepresentable(U value) {
return (std::numeric_limits<T>::min() <= value) && (value <= std::numeric_limits<T>::max());
}
template<class T>
bool canBeSafelyCasted(PyObject* obj, PyArray_Descr* to)
{
return PyArray_CanCastTo(PyArray_DescrFromScalar(obj), to) != 0;
}
template<>
bool canBeSafelyCasted<size_t>(PyObject* obj, PyArray_Descr* to)
{
PyArray_Descr* from = PyArray_DescrFromScalar(obj);
if (PyArray_CanCastTo(from, to))
{
return true;
}
else
{
// False negative scenarios:
// - Signed input is positive so it can be safely cast to unsigned output
// - Input has wider limits but value is representable within output limits
// - All the above
if (PyDataType_ISSIGNED(from))
{
int64_t input = 0;
PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor<int64_t>());
return (input >= 0) && isRepresentable<size_t>(static_cast<uint64_t>(input));
}
else
{
uint64_t input = 0;
PyArray_CastScalarToCtype(obj, &input, getNumpyTypeDescriptor<uint64_t>());
return isRepresentable<size_t>(input);
}
return false;
}
}
template<class T>
bool parseNumpyScalar(PyObject* obj, T& value)
{
if (PyArray_CheckScalar(obj))
{
// According to the numpy documentation:
// There are 21 statically-defined PyArray_Descr objects for the built-in data-types
// So descriptor pointer is not owning.
PyArray_Descr* to = getNumpyTypeDescriptor<T>();
if (canBeSafelyCasted<T>(obj, to))
{
PyArray_CastScalarToCtype(obj, &value, to);
return true;
}
}
return false;
}
} // namespace
typedef std::vector<uchar> vector_uchar;
typedef std::vector<char> vector_char;
typedef std::vector<int> vector_int;
typedef std::vector<float> vector_float;
typedef std::vector<double> vector_double;
typedef std::vector<size_t> vector_size_t;
typedef std::vector<Point> vector_Point;
typedef std::vector<Point2f> vector_Point2f;
typedef std::vector<Point3f> vector_Point3f;
typedef std::vector<Size> vector_Size;
typedef std::vector<Vec2f> vector_Vec2f;
typedef std::vector<Vec3f> vector_Vec3f;
typedef std::vector<Vec4f> vector_Vec4f;
typedef std::vector<Vec6f> vector_Vec6f;
typedef std::vector<Vec4i> vector_Vec4i;
typedef std::vector<Rect> vector_Rect;
typedef std::vector<Rect2d> vector_Rect2d;
typedef std::vector<RotatedRect> vector_RotatedRect;
typedef std::vector<KeyPoint> vector_KeyPoint;
typedef std::vector<Mat> vector_Mat;
typedef std::vector<std::vector<Mat> > vector_vector_Mat;
typedef std::vector<UMat> vector_UMat;
typedef std::vector<DMatch> vector_DMatch;
typedef std::vector<String> vector_String;
typedef std::vector<std::string> vector_string;
typedef std::vector<Scalar> vector_Scalar;
typedef std::vector<std::vector<char> > vector_vector_char;
typedef std::vector<std::vector<Point> > vector_vector_Point;
typedef std::vector<std::vector<Point2f> > vector_vector_Point2f;
typedef std::vector<std::vector<Point3f> > vector_vector_Point3f;
typedef std::vector<std::vector<DMatch> > vector_vector_DMatch;
typedef std::vector<std::vector<KeyPoint> > vector_vector_KeyPoint;
class NumpyAllocator : public MatAllocator
{
public:
NumpyAllocator() { stdAllocator = Mat::getStdAllocator(); }
~NumpyAllocator() {}
UMatData* allocate(PyObject* o, int dims, const int* sizes, int type, size_t* step) const
{
UMatData* u = new UMatData(this);
u->data = u->origdata = (uchar*)PyArray_DATA((PyArrayObject*) o);
npy_intp* _strides = PyArray_STRIDES((PyArrayObject*) o);
for( int i = 0; i < dims - 1; i++ )
step[i] = (size_t)_strides[i];
step[dims-1] = CV_ELEM_SIZE(type);
u->size = sizes[0]*step[0];
u->userdata = o;
return u;
}
UMatData* allocate(int dims0, const int* sizes, int type, void* data, size_t* step, AccessFlag flags, UMatUsageFlags usageFlags) const CV_OVERRIDE
{
if( data != 0 )
{
// issue #6969: CV_Error(Error::StsAssert, "The data should normally be NULL!");
// probably this is safe to do in such extreme case
return stdAllocator->allocate(dims0, sizes, type, data, step, flags, usageFlags);
}
13 years ago
PyEnsureGIL gil;
int depth = CV_MAT_DEPTH(type);
int cn = CV_MAT_CN(type);
const int f = (int)(sizeof(size_t)/8);
int typenum = depth == CV_8U ? NPY_UBYTE : depth == CV_8S ? NPY_BYTE :
depth == CV_16U ? NPY_USHORT : depth == CV_16S ? NPY_SHORT :
depth == CV_32S ? NPY_INT : depth == CV_32F ? NPY_FLOAT :
depth == CV_64F ? NPY_DOUBLE : f*NPY_ULONGLONG + (f^1)*NPY_UINT;
int i, dims = dims0;
cv::AutoBuffer<npy_intp> _sizes(dims + 1);
for( i = 0; i < dims; i++ )
_sizes[i] = sizes[i];
if( cn > 1 )
_sizes[dims++] = cn;
PyObject* o = PyArray_SimpleNew(dims, _sizes.data(), typenum);
if(!o)
CV_Error_(Error::StsError, ("The numpy array of typenum=%d, ndims=%d can not be created", typenum, dims));
return allocate(o, dims0, sizes, type, step);
}
bool allocate(UMatData* u, AccessFlag accessFlags, UMatUsageFlags usageFlags) const CV_OVERRIDE
{
return stdAllocator->allocate(u, accessFlags, usageFlags);
}
void deallocate(UMatData* u) const CV_OVERRIDE
{
if(!u)
return;
PyEnsureGIL gil;
CV_Assert(u->urefcount >= 0);
CV_Assert(u->refcount >= 0);
if(u->refcount == 0)
{
PyObject* o = (PyObject*)u->userdata;
Py_XDECREF(o);
delete u;
}
}
const MatAllocator* stdAllocator;
};
NumpyAllocator g_numpyAllocator;
enum { ARG_NONE = 0, ARG_MAT = 1, ARG_SCALAR = 2 };
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
static bool isBool(PyObject* obj) CV_NOEXCEPT
{
return PyArray_IsScalar(obj, Bool) || PyBool_Check(obj);
}
// special case, when the converter needs full ArgInfo structure
static bool pyopencv_to(PyObject* o, Mat& m, const ArgInfo& info)
{
bool allowND = true;
if(!o || o == Py_None)
{
if( !m.data )
m.allocator = &g_numpyAllocator;
return true;
}
if( PyInt_Check(o) )
{
double v[] = {static_cast<double>(PyInt_AsLong((PyObject*)o)), 0., 0., 0.};
m = Mat(4, 1, CV_64F, v).clone();
return true;
}
if( PyFloat_Check(o) )
{
double v[] = {PyFloat_AsDouble((PyObject*)o), 0., 0., 0.};
m = Mat(4, 1, CV_64F, v).clone();
return true;
}
if( PyTuple_Check(o) )
{
int i, sz = (int)PyTuple_Size((PyObject*)o);
m = Mat(sz, 1, CV_64F);
for( i = 0; i < sz; i++ )
{
PyObject* oi = PyTuple_GetItem(o, i);
if( PyInt_Check(oi) )
m.at<double>(i) = (double)PyInt_AsLong(oi);
else if( PyFloat_Check(oi) )
m.at<double>(i) = (double)PyFloat_AsDouble(oi);
else
{
failmsg("%s is not a numerical tuple", info.name);
m.release();
return false;
}
}
return true;
}
if( !PyArray_Check(o) )
{
failmsg("%s is not a numpy array, neither a scalar", info.name);
return false;
}
PyArrayObject* oarr = (PyArrayObject*) o;
bool needcopy = false, needcast = false;
int typenum = PyArray_TYPE(oarr), new_typenum = typenum;
int type = typenum == NPY_UBYTE ? CV_8U :
typenum == NPY_BYTE ? CV_8S :
typenum == NPY_USHORT ? CV_16U :
typenum == NPY_SHORT ? CV_16S :
typenum == NPY_INT ? CV_32S :
typenum == NPY_INT32 ? CV_32S :
typenum == NPY_FLOAT ? CV_32F :
typenum == NPY_DOUBLE ? CV_64F : -1;
if( type < 0 )
{
if( typenum == NPY_INT64 || typenum == NPY_UINT64 || typenum == NPY_LONG )
{
needcopy = needcast = true;
new_typenum = NPY_INT;
type = CV_32S;
}
else
{
failmsg("%s data type = %d is not supported", info.name, typenum);
return false;
}
}
#ifndef CV_MAX_DIM
const int CV_MAX_DIM = 32;
#endif
int ndims = PyArray_NDIM(oarr);
if(ndims >= CV_MAX_DIM)
{
failmsg("%s dimensionality (=%d) is too high", info.name, ndims);
return false;
}
int size[CV_MAX_DIM+1];
size_t step[CV_MAX_DIM+1];
size_t elemsize = CV_ELEM_SIZE1(type);
const npy_intp* _sizes = PyArray_DIMS(oarr);
const npy_intp* _strides = PyArray_STRIDES(oarr);
bool ismultichannel = ndims == 3 && _sizes[2] <= CV_CN_MAX;
for( int i = ndims-1; i >= 0 && !needcopy; i-- )
{
// these checks handle cases of
// a) multi-dimensional (ndims > 2) arrays, as well as simpler 1- and 2-dimensional cases
// b) transposed arrays, where _strides[] elements go in non-descending order
// c) flipped arrays, where some of _strides[] elements are negative
// the _sizes[i] > 1 is needed to avoid spurious copies when NPY_RELAXED_STRIDES is set
if( (i == ndims-1 && _sizes[i] > 1 && (size_t)_strides[i] != elemsize) ||
(i < ndims-1 && _sizes[i] > 1 && _strides[i] < _strides[i+1]) )
needcopy = true;
}
if( ismultichannel && _strides[1] != (npy_intp)elemsize*_sizes[2] )
needcopy = true;
if (needcopy)
{
if (info.outputarg)
{
failmsg("Layout of the output array %s is incompatible with cv::Mat (step[ndims-1] != elemsize or step[1] != elemsize*nchannels)", info.name);
return false;
}
if( needcast ) {
o = PyArray_Cast(oarr, new_typenum);
oarr = (PyArrayObject*) o;
}
else {
oarr = PyArray_GETCONTIGUOUS(oarr);
o = (PyObject*) oarr;
}
_strides = PyArray_STRIDES(oarr);
}
// Normalize strides in case NPY_RELAXED_STRIDES is set
size_t default_step = elemsize;
for ( int i = ndims - 1; i >= 0; --i )
{
size[i] = (int)_sizes[i];
if ( size[i] > 1 )
{
step[i] = (size_t)_strides[i];
default_step = step[i] * size[i];
}
else
{
step[i] = default_step;
default_step *= size[i];
}
}
// handle degenerate case
if( ndims == 0) {
size[ndims] = 1;
step[ndims] = elemsize;
ndims++;
}
if( ismultichannel )
{
ndims--;
type |= CV_MAKETYPE(0, size[2]);
}
if( ndims > 2 && !allowND )
{
failmsg("%s has more than 2 dimensions", info.name);
return false;
}
m = Mat(ndims, size, type, PyArray_DATA(oarr), step);
m.u = g_numpyAllocator.allocate(o, ndims, size, type, step);
m.addref();
if( !needcopy )
{
Py_INCREF(o);
}
m.allocator = &g_numpyAllocator;
return true;
}
template<typename _Tp, int m, int n>
bool pyopencv_to(PyObject* o, Matx<_Tp, m, n>& mx, const ArgInfo& info)
{
Mat tmp;
if (!pyopencv_to(o, tmp, info)) {
return false;
}
tmp.copyTo(mx);
return true;
}
template<typename _Tp, int cn>
bool pyopencv_to(PyObject* o, Vec<_Tp, cn>& vec, const ArgInfo& info)
{
return pyopencv_to(o, (Matx<_Tp, cn, 1>&)vec, info);
}
template<>
PyObject* pyopencv_from(const Mat& m)
{
if( !m.data )
Py_RETURN_NONE;
Mat temp, *p = (Mat*)&m;
if(!p->u || p->allocator != &g_numpyAllocator)
{
temp.allocator = &g_numpyAllocator;
ERRWRAP2(m.copyTo(temp));
p = &temp;
}
PyObject* o = (PyObject*)p->u->userdata;
Py_INCREF(o);
return o;
}
template<typename _Tp, int m, int n>
PyObject* pyopencv_from(const Matx<_Tp, m, n>& matx)
{
return pyopencv_from(Mat(matx));
}
template<typename T>
struct PyOpenCV_Converter< cv::Ptr<T> >
{
static PyObject* from(const cv::Ptr<T>& p)
{
if (!p)
Py_RETURN_NONE;
return pyopencv_from(*p);
}
static bool to(PyObject *o, Ptr<T>& p, const ArgInfo& info)
{
if (!o || o == Py_None)
return true;
p = makePtr<T>();
return pyopencv_to(o, *p, info);
}
};
template<>
bool pyopencv_to(PyObject* obj, void*& ptr, const ArgInfo& info)
{
CV_UNUSED(info);
if (!obj || obj == Py_None)
return true;
if (!PyLong_Check(obj))
return false;
ptr = PyLong_AsVoidPtr(obj);
return ptr != NULL && !PyErr_Occurred();
}
static PyObject* pyopencv_from(void*& ptr)
{
return PyLong_FromVoidPtr(ptr);
}
struct SafeSeqItem
{
PyObject * item;
SafeSeqItem(PyObject *obj, size_t idx) { item = PySequence_GetItem(obj, idx); }
~SafeSeqItem() { Py_XDECREF(item); }
};
static bool pyopencv_to(PyObject *o, Scalar& s, const ArgInfo& info)
{
if(!o || o == Py_None)
return true;
if (PySequence_Check(o)) {
if (4 < PySequence_Size(o))
{
failmsg("Scalar value for argument '%s' is longer than 4", info.name);
return false;
}
for (Py_ssize_t i = 0; i < PySequence_Size(o); i++) {
SafeSeqItem item_wrap(o, i);
PyObject *item = item_wrap.item;
if (PyFloat_Check(item) || PyInt_Check(item)) {
s[(int)i] = PyFloat_AsDouble(item);
} else {
failmsg("Scalar value for argument '%s' is not numeric", info.name);
return false;
}
}
} else {
if (PyFloat_Check(o) || PyInt_Check(o)) {
s[0] = PyFloat_AsDouble(o);
} else {
failmsg("Scalar value for argument '%s' is not numeric", info.name);
return false;
}
}
return true;
}
template<>
PyObject* pyopencv_from(const Scalar& src)
{
return Py_BuildValue("(dddd)", src[0], src[1], src[2], src[3]);
}
template<>
PyObject* pyopencv_from(const bool& value)
{
return PyBool_FromLong(value);
}
template<>
bool pyopencv_to(PyObject* obj, bool& value, const ArgInfo& info)
{
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
if (!obj || obj == Py_None)
{
return true;
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
}
if (isBool(obj) || PyArray_IsIntegerScalar(obj))
{
npy_bool npy_value = NPY_FALSE;
const int ret_code = PyArray_BoolConverter(obj, &npy_value);
if (ret_code >= 0)
{
value = (npy_value == NPY_TRUE);
return true;
}
}
failmsg("Argument '%s' is not convertable to bool", info.name);
return false;
}
template<>
PyObject* pyopencv_from(const size_t& value)
{
return PyLong_FromSize_t(value);
}
template<>
bool pyopencv_to(PyObject* obj, size_t& value, const ArgInfo& info)
{
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
if (!obj || obj == Py_None)
{
return true;
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
}
if (isBool(obj))
{
failmsg("Argument '%s' must be integer type, not bool", info.name);
return false;
}
if (PyArray_IsIntegerScalar(obj))
{
if (PyLong_Check(obj))
{
#if defined(CV_PYTHON_3)
value = PyLong_AsSize_t(obj);
#else
#if ULONG_MAX == SIZE_MAX
value = PyLong_AsUnsignedLong(obj);
#else
value = PyLong_AsUnsignedLongLong(obj);
#endif
#endif
}
#if !defined(CV_PYTHON_3)
// Python 2.x has PyIntObject which is not a subtype of PyLongObject
// Overflow check here is unnecessary because object will be converted to long on the
// interpreter side
else if (PyInt_Check(obj))
{
const long res = PyInt_AsLong(obj);
if (res < 0) {
failmsg("Argument '%s' can not be safely parsed to 'size_t'", info.name);
return false;
}
#if ULONG_MAX == SIZE_MAX
value = PyInt_AsUnsignedLongMask(obj);
#else
value = PyInt_AsUnsignedLongLongMask(obj);
#endif
}
#endif
else
{
const bool isParsed = parseNumpyScalar<size_t>(obj, value);
if (!isParsed) {
failmsg("Argument '%s' can not be safely parsed to 'size_t'", info.name);
return false;
}
}
}
else
{
failmsg("Argument '%s' is required to be an integer", info.name);
return false;
}
return !PyErr_Occurred();
}
template<>
PyObject* pyopencv_from(const int& value)
{
return PyInt_FromLong(value);
}
template<>
bool pyopencv_to(PyObject* obj, int& value, const ArgInfo& info)
{
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
if (!obj || obj == Py_None)
{
return true;
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
}
if (isBool(obj))
{
failmsg("Argument '%s' must be integer, not bool", info.name);
return false;
}
if (PyArray_IsIntegerScalar(obj))
{
value = PyArray_PyIntAsInt(obj);
}
else
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
{
failmsg("Argument '%s' is required to be an integer", info.name);
return false;
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
}
return !CV_HAS_CONVERSION_ERROR(value);
}
// There is conflict between "size_t" and "unsigned int".
// They are the same type on some 32-bit platforms.
template<typename T>
struct PyOpenCV_Converter
< T, typename std::enable_if< std::is_same<unsigned int, T>::value && !std::is_same<unsigned int, size_t>::value >::type >
{
static inline PyObject* from(const unsigned int& value)
{
return PyLong_FromUnsignedLong(value);
}
static inline bool to(PyObject* obj, unsigned int& value, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
return true;
if(PyInt_Check(obj))
value = (unsigned int)PyInt_AsLong(obj);
else if(PyLong_Check(obj))
value = (unsigned int)PyLong_AsLong(obj);
else
return false;
return value != (unsigned int)-1 || !PyErr_Occurred();
}
};
template<>
PyObject* pyopencv_from(const uchar& value)
{
return PyInt_FromLong(value);
}
template<>
bool pyopencv_to(PyObject* obj, uchar& value, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
return true;
int ivalue = (int)PyInt_AsLong(obj);
value = cv::saturate_cast<uchar>(ivalue);
return ivalue != -1 || !PyErr_Occurred();
}
template<>
PyObject* pyopencv_from(const double& value)
{
return PyFloat_FromDouble(value);
}
template<>
bool pyopencv_to(PyObject* obj, double& value, const ArgInfo& info)
{
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
if (!obj || obj == Py_None)
{
return true;
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
}
if (isBool(obj))
{
failmsg("Argument '%s' must be double, not bool", info.name);
return false;
}
if (PyArray_IsPythonNumber(obj))
{
if (PyLong_Check(obj))
{
value = PyLong_AsDouble(obj);
}
else
{
value = PyFloat_AsDouble(obj);
}
}
else if (PyArray_CheckScalar(obj))
{
const bool isParsed = parseNumpyScalar<double>(obj, value);
if (!isParsed) {
failmsg("Argument '%s' can not be safely parsed to 'double'", info.name);
return false;
}
}
else
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
{
failmsg("Argument '%s' can not be treated as a double", info.name);
return false;
}
return !PyErr_Occurred();
}
template<>
PyObject* pyopencv_from(const float& value)
{
return PyFloat_FromDouble(value);
}
template<>
bool pyopencv_to(PyObject* obj, float& value, const ArgInfo& info)
{
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
if (!obj || obj == Py_None)
{
return true;
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
}
if (isBool(obj))
{
failmsg("Argument '%s' must be float, not bool", info.name);
return false;
}
if (PyArray_IsPythonNumber(obj))
{
if (PyLong_Check(obj))
{
double res = PyLong_AsDouble(obj);
value = static_cast<float>(res);
}
else
{
double res = PyFloat_AsDouble(obj);
value = static_cast<float>(res);
}
}
else if (PyArray_CheckScalar(obj))
{
const bool isParsed = parseNumpyScalar<float>(obj, value);
if (!isParsed) {
failmsg("Argument '%s' can not be safely parsed to 'float'", info.name);
return false;
}
}
else
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
{
failmsg("Argument '%s' can't be treated as a float", info.name);
return false;
}
return !PyErr_Occurred();
}
template<>
PyObject* pyopencv_from(const int64& value)
{
return PyLong_FromLongLong(value);
}
template<>
PyObject* pyopencv_from(const String& value)
{
return PyString_FromString(value.empty() ? "" : value.c_str());
}
#if CV_VERSION_MAJOR == 3
template<>
PyObject* pyopencv_from(const std::string& value)
{
return PyString_FromString(value.empty() ? "" : value.c_str());
}
#endif
template<>
bool pyopencv_to(PyObject* obj, String &value, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
return true;
std::string str;
if (getUnicodeString(obj, str))
{
value = str;
return true;
}
return false;
}
template<>
bool pyopencv_to(PyObject* obj, Size& sz, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "ii", &sz.width, &sz.height) > 0;
}
template<>
PyObject* pyopencv_from(const Size& sz)
{
return Py_BuildValue("(ii)", sz.width, sz.height);
}
template<>
bool pyopencv_to(PyObject* obj, Size_<float>& sz, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "ff", &sz.width, &sz.height) > 0;
}
template<>
PyObject* pyopencv_from(const Size_<float>& sz)
{
return Py_BuildValue("(ff)", sz.width, sz.height);
}
template<>
PyObject* pyopencv_from(const Rect& r)
{
return Py_BuildValue("(iiii)", r.x, r.y, r.width, r.height);
}
template<>
bool pyopencv_to(PyObject* obj, Rect2d& r, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "dddd", &r.x, &r.y, &r.width, &r.height) > 0;
}
template<>
PyObject* pyopencv_from(const Rect2d& r)
{
return Py_BuildValue("(dddd)", r.x, r.y, r.width, r.height);
}
template<>
bool pyopencv_to(PyObject* obj, Range& r, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
return true;
while (PySequence_Check(obj))
{
if (2 != PySequence_Size(obj))
{
failmsg("Range value for argument '%s' is longer than 2", info.name);
return false;
}
{
SafeSeqItem item_wrap(obj, 0);
PyObject *item = item_wrap.item;
if (PyInt_Check(item)) {
r.start = (int)PyInt_AsLong(item);
} else {
failmsg("Range.start value for argument '%s' is not integer", info.name);
break;
}
}
{
SafeSeqItem item_wrap(obj, 1);
PyObject *item = item_wrap.item;
if (PyInt_Check(item)) {
r.end = (int)PyInt_AsLong(item);
} else {
failmsg("Range.end value for argument '%s' is not integer", info.name);
break;
}
}
return true;
}
if(PyObject_Size(obj) == 0)
{
r = Range::all();
return true;
}
return PyArg_ParseTuple(obj, "ii", &r.start, &r.end) > 0;
}
template<>
PyObject* pyopencv_from(const Range& r)
{
return Py_BuildValue("(ii)", r.start, r.end);
}
template<>
bool pyopencv_to(PyObject* obj, Point& p, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
return true;
if(PyComplex_Check(obj))
{
p.x = saturate_cast<int>(PyComplex_RealAsDouble(obj));
p.y = saturate_cast<int>(PyComplex_ImagAsDouble(obj));
return true;
}
return PyArg_ParseTuple(obj, "ii", &p.x, &p.y) > 0;
}
template<>
bool pyopencv_to(PyObject* obj, Point2f& p, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
return true;
if (PyComplex_Check(obj))
{
p.x = saturate_cast<float>(PyComplex_RealAsDouble(obj));
p.y = saturate_cast<float>(PyComplex_ImagAsDouble(obj));
return true;
}
return PyArg_ParseTuple(obj, "ff", &p.x, &p.y) > 0;
}
template<>
bool pyopencv_to(PyObject* obj, Point2d& p, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
return true;
if(PyComplex_Check(obj))
{
p.x = PyComplex_RealAsDouble(obj);
p.y = PyComplex_ImagAsDouble(obj);
return true;
}
return PyArg_ParseTuple(obj, "dd", &p.x, &p.y) > 0;
}
template<>
bool pyopencv_to(PyObject* obj, Point3f& p, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "fff", &p.x, &p.y, &p.z) > 0;
}
template<>
bool pyopencv_to(PyObject* obj, Point3d& p, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
return true;
return PyArg_ParseTuple(obj, "ddd", &p.x, &p.y, &p.z) > 0;
}
template<>
PyObject* pyopencv_from(const Point& p)
{
return Py_BuildValue("(ii)", p.x, p.y);
}
template<>
PyObject* pyopencv_from(const Point2f& p)
{
return Py_BuildValue("(dd)", p.x, p.y);
}
template<>
PyObject* pyopencv_from(const Point3f& p)
{
return Py_BuildValue("(ddd)", p.x, p.y, p.z);
}
static bool pyopencv_to(PyObject* obj, Vec4d& v, ArgInfo& info)
{
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "dddd", &v[0], &v[1], &v[2], &v[3]) > 0;
}
static bool pyopencv_to(PyObject* obj, Vec4f& v, ArgInfo& info)
{
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "ffff", &v[0], &v[1], &v[2], &v[3]) > 0;
}
static bool pyopencv_to(PyObject* obj, Vec4i& v, ArgInfo& info)
{
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "iiii", &v[0], &v[1], &v[2], &v[3]) > 0;
}
static bool pyopencv_to(PyObject* obj, Vec3d& v, ArgInfo& info)
{
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "ddd", &v[0], &v[1], &v[2]) > 0;
}
static bool pyopencv_to(PyObject* obj, Vec3f& v, ArgInfo& info)
{
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "fff", &v[0], &v[1], &v[2]) > 0;
}
static bool pyopencv_to(PyObject* obj, Vec3i& v, ArgInfo& info)
{
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "iii", &v[0], &v[1], &v[2]) > 0;
}
static bool pyopencv_to(PyObject* obj, Vec2d& v, ArgInfo& info)
{
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "dd", &v[0], &v[1]) > 0;
}
static bool pyopencv_to(PyObject* obj, Vec2f& v, ArgInfo& info)
{
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "ff", &v[0], &v[1]) > 0;
}
static bool pyopencv_to(PyObject* obj, Vec2i& v, ArgInfo& info)
{
CV_UNUSED(info);
if (!obj)
return true;
return PyArg_ParseTuple(obj, "ii", &v[0], &v[1]) > 0;
}
template<>
PyObject* pyopencv_from(const Vec4d& v)
{
return Py_BuildValue("(dddd)", v[0], v[1], v[2], v[3]);
}
template<>
PyObject* pyopencv_from(const Vec4f& v)
{
return Py_BuildValue("(ffff)", v[0], v[1], v[2], v[3]);
}
template<>
PyObject* pyopencv_from(const Vec4i& v)
{
return Py_BuildValue("(iiii)", v[0], v[1], v[2], v[3]);
}
template<>
PyObject* pyopencv_from(const Vec3d& v)
{
return Py_BuildValue("(ddd)", v[0], v[1], v[2]);
}
template<>
PyObject* pyopencv_from(const Vec3f& v)
{
return Py_BuildValue("(fff)", v[0], v[1], v[2]);
}
template<>
PyObject* pyopencv_from(const Vec3i& v)
{
return Py_BuildValue("(iii)", v[0], v[1], v[2]);
}
template<>
PyObject* pyopencv_from(const Vec2d& v)
{
return Py_BuildValue("(dd)", v[0], v[1]);
}
template<>
PyObject* pyopencv_from(const Vec2f& v)
{
return Py_BuildValue("(ff)", v[0], v[1]);
}
template<>
PyObject* pyopencv_from(const Vec2i& v)
{
return Py_BuildValue("(ii)", v[0], v[1]);
}
template<>
PyObject* pyopencv_from(const Point2d& p)
{
return Py_BuildValue("(dd)", p.x, p.y);
}
template<>
PyObject* pyopencv_from(const Point3d& p)
{
return Py_BuildValue("(ddd)", p.x, p.y, p.z);
}
template<typename _Tp> struct pyopencvVecConverter
{
typedef typename DataType<_Tp>::channel_type _Cp;
static inline bool copyOneItem(PyObject *obj, size_t start, int channels, _Cp * data)
{
for(size_t j = 0; (int)j < channels; j++ )
{
SafeSeqItem sub_item_wrap(obj, start + j);
PyObject* item_ij = sub_item_wrap.item;
if( PyInt_Check(item_ij))
{
int v = (int)PyInt_AsLong(item_ij);
if( v == -1 && PyErr_Occurred() )
return false;
data[j] = saturate_cast<_Cp>(v);
}
else if( PyLong_Check(item_ij))
{
int v = (int)PyLong_AsLong(item_ij);
if( v == -1 && PyErr_Occurred() )
return false;
data[j] = saturate_cast<_Cp>(v);
}
else if( PyFloat_Check(item_ij))
{
double v = PyFloat_AsDouble(item_ij);
if( PyErr_Occurred() )
return false;
data[j] = saturate_cast<_Cp>(v);
}
else
return false;
}
return true;
}
static bool to(PyObject* obj, std::vector<_Tp>& value, const ArgInfo& info)
{
if(!obj || obj == Py_None)
return true;
if (PyArray_Check(obj))
{
Mat m;
pyopencv_to(obj, m, info);
m.copyTo(value);
return true;
}
else if (PySequence_Check(obj))
{
const int type = traits::Type<_Tp>::value;
const int depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);
size_t i, n = PySequence_Size(obj);
value.resize(n);
for (i = 0; i < n; i++ )
{
SafeSeqItem item_wrap(obj, i);
PyObject* item = item_wrap.item;
_Cp* data = (_Cp*)&value[i];
if( channels == 2 && PyComplex_Check(item) )
{
data[0] = saturate_cast<_Cp>(PyComplex_RealAsDouble(item));
data[1] = saturate_cast<_Cp>(PyComplex_ImagAsDouble(item));
}
else if( channels > 1 )
{
if( PyArray_Check(item))
{
Mat src;
pyopencv_to(item, src, info);
if( src.dims != 2 || src.channels() != 1 ||
((src.cols != 1 || src.rows != channels) &&
(src.cols != channels || src.rows != 1)))
break;
Mat dst(src.rows, src.cols, depth, data);
src.convertTo(dst, type);
if( dst.data != (uchar*)data )
break;
}
else if (PySequence_Check(item))
{
if (!copyOneItem(item, 0, channels, data))
break;
}
else
{
break;
}
}
else if (channels == 1)
{
if (!copyOneItem(obj, i, channels, data))
break;
}
else
{
break;
}
}
return i == n;
}
return false;
}
static PyObject* from(const std::vector<_Tp>& value)
{
if(value.empty())
return PyTuple_New(0);
int type = traits::Type<_Tp>::value;
int depth = CV_MAT_DEPTH(type), channels = CV_MAT_CN(type);
Mat src((int)value.size(), channels, depth, (uchar*)&value[0]);
return pyopencv_from(src);
}
};
template<typename _Tp>
bool pyopencv_to(PyObject* obj, std::vector<_Tp>& value, const ArgInfo& info)
{
return pyopencvVecConverter<_Tp>::to(obj, value, info);
}
template<typename _Tp>
PyObject* pyopencv_from(const std::vector<_Tp>& value)
{
return pyopencvVecConverter<_Tp>::from(value);
}
template<typename _Tp> static inline bool pyopencv_to_generic_vec(PyObject* obj, std::vector<_Tp>& value, const ArgInfo& info)
{
if(!obj || obj == Py_None)
return true;
if (!PySequence_Check(obj))
return false;
size_t n = PySequence_Size(obj);
value.resize(n);
for(size_t i = 0; i < n; i++ )
{
SafeSeqItem item_wrap(obj, i);
if(!pyopencv_to(item_wrap.item, value[i], info))
return false;
}
return true;
}
template<typename _Tp> static inline PyObject* pyopencv_from_generic_vec(const std::vector<_Tp>& value)
{
int i, n = (int)value.size();
PyObject* seq = PyList_New(n);
for( i = 0; i < n; i++ )
{
PyObject* item = pyopencv_from(value[i]);
if(!item)
break;
PyList_SetItem(seq, i, item);
}
if( i < n )
{
Py_DECREF(seq);
return 0;
}
return seq;
}
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I == sizeof...(Tp), void>::type
convert_to_python_tuple(const std::tuple<Tp...>&, PyObject*) { }
template<std::size_t I = 0, typename... Tp>
inline typename std::enable_if<I < sizeof...(Tp), void>::type
convert_to_python_tuple(const std::tuple<Tp...>& cpp_tuple, PyObject* py_tuple)
{
PyObject* item = pyopencv_from(std::get<I>(cpp_tuple));
if (!item)
return;
PyTuple_SetItem(py_tuple, I, item);
convert_to_python_tuple<I + 1, Tp...>(cpp_tuple, py_tuple);
}
template<typename... Ts>
PyObject* pyopencv_from(const std::tuple<Ts...>& cpp_tuple)
{
size_t size = sizeof...(Ts);
PyObject* py_tuple = PyTuple_New(size);
convert_to_python_tuple(cpp_tuple, py_tuple);
size_t actual_size = PyTuple_Size(py_tuple);
if (actual_size < size)
{
Py_DECREF(py_tuple);
return NULL;
}
return py_tuple;
}
template<>
PyObject* pyopencv_from(const std::pair<int, double>& src)
{
return Py_BuildValue("(id)", src.first, src.second);
}
template<typename _Tp, typename _Tr> struct pyopencvVecConverter<std::pair<_Tp, _Tr> >
{
static bool to(PyObject* obj, std::vector<std::pair<_Tp, _Tr> >& value, const ArgInfo& info)
{
return pyopencv_to_generic_vec(obj, value, info);
}
static PyObject* from(const std::vector<std::pair<_Tp, _Tr> >& value)
{
return pyopencv_from_generic_vec(value);
}
};
template<typename _Tp> struct pyopencvVecConverter<std::vector<_Tp> >
{
static bool to(PyObject* obj, std::vector<std::vector<_Tp> >& value, const ArgInfo& info)
{
return pyopencv_to_generic_vec(obj, value, info);
}
static PyObject* from(const std::vector<std::vector<_Tp> >& value)
{
return pyopencv_from_generic_vec(value);
}
};
template<> struct pyopencvVecConverter<Mat>
{
static bool to(PyObject* obj, std::vector<Mat>& value, const ArgInfo& info)
{
return pyopencv_to_generic_vec(obj, value, info);
}
static PyObject* from(const std::vector<Mat>& value)
{
return pyopencv_from_generic_vec(value);
}
};
template<> struct pyopencvVecConverter<UMat>
{
static bool to(PyObject* obj, std::vector<UMat>& value, const ArgInfo& info)
{
return pyopencv_to_generic_vec(obj, value, info);
}
static PyObject* from(const std::vector<UMat>& value)
{
return pyopencv_from_generic_vec(value);
}
};
template<> struct pyopencvVecConverter<KeyPoint>
{
static bool to(PyObject* obj, std::vector<KeyPoint>& value, const ArgInfo& info)
{
return pyopencv_to_generic_vec(obj, value, info);
}
static PyObject* from(const std::vector<KeyPoint>& value)
{
return pyopencv_from_generic_vec(value);
}
};
template<> struct pyopencvVecConverter<DMatch>
{
static bool to(PyObject* obj, std::vector<DMatch>& value, const ArgInfo& info)
{
return pyopencv_to_generic_vec(obj, value, info);
}
static PyObject* from(const std::vector<DMatch>& value)
{
return pyopencv_from_generic_vec(value);
}
};
template<> struct pyopencvVecConverter<String>
{
static bool to(PyObject* obj, std::vector<String>& value, const ArgInfo& info)
{
return pyopencv_to_generic_vec(obj, value, info);
}
static PyObject* from(const std::vector<String>& value)
{
return pyopencv_from_generic_vec(value);
}
};
template<> struct pyopencvVecConverter<RotatedRect>
{
static bool to(PyObject* obj, std::vector<RotatedRect>& value, const ArgInfo& info)
{
return pyopencv_to_generic_vec(obj, value, info);
}
static PyObject* from(const std::vector<RotatedRect>& value)
{
return pyopencv_from_generic_vec(value);
}
};
template<>
bool pyopencv_to(PyObject* obj, Rect& r, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj || obj == Py_None)
return true;
if (PyTuple_Check(obj))
return PyArg_ParseTuple(obj, "iiii", &r.x, &r.y, &r.width, &r.height) > 0;
else
{
std::vector<int> value(4);
pyopencvVecConverter<int>::to(obj, value, info);
r = Rect(value[0], value[1], value[2], value[3]);
return true;
}
}
template<>
bool pyopencv_to(PyObject *obj, TermCriteria& dst, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj)
return true;
return PyArg_ParseTuple(obj, "iid", &dst.type, &dst.maxCount, &dst.epsilon) > 0;
}
template<>
PyObject* pyopencv_from(const TermCriteria& src)
{
return Py_BuildValue("(iid)", src.type, src.maxCount, src.epsilon);
}
template<>
bool pyopencv_to(PyObject *obj, RotatedRect& dst, const ArgInfo& info)
{
CV_UNUSED(info);
if(!obj)
return true;
return PyArg_ParseTuple(obj, "(ff)(ff)f", &dst.center.x, &dst.center.y, &dst.size.width, &dst.size.height, &dst.angle) > 0;
}
template<>
PyObject* pyopencv_from(const RotatedRect& src)
{
return Py_BuildValue("((ff)(ff)f)", src.center.x, src.center.y, src.size.width, src.size.height, src.angle);
}
template<>
PyObject* pyopencv_from(const Moments& m)
{
return Py_BuildValue("{s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d,s:d}",
"m00", m.m00, "m10", m.m10, "m01", m.m01,
"m20", m.m20, "m11", m.m11, "m02", m.m02,
"m30", m.m30, "m21", m.m21, "m12", m.m12, "m03", m.m03,
"mu20", m.mu20, "mu11", m.mu11, "mu02", m.mu02,
"mu30", m.mu30, "mu21", m.mu21, "mu12", m.mu12, "mu03", m.mu03,
"nu20", m.nu20, "nu11", m.nu11, "nu02", m.nu02,
"nu30", m.nu30, "nu21", m.nu21, "nu12", m.nu12, "nu03", m.nu03);
}
static int OnError(int status, const char *func_name, const char *err_msg, const char *file_name, int line, void *userdata)
{
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
PyObject *on_error = (PyObject*)userdata;
PyObject *args = Py_BuildValue("isssi", status, func_name, err_msg, file_name, line);
PyObject *r = PyObject_Call(on_error, args, NULL);
if (r == NULL) {
PyErr_Print();
} else {
Py_DECREF(r);
}
Py_DECREF(args);
PyGILState_Release(gstate);
return 0; // The return value isn't used
}
static PyObject *pycvRedirectError(PyObject*, PyObject *args, PyObject *kw)
{
const char *keywords[] = { "on_error", NULL };
PyObject *on_error;
if (!PyArg_ParseTupleAndKeywords(args, kw, "O", (char**)keywords, &on_error))
return NULL;
if ((on_error != Py_None) && !PyCallable_Check(on_error)) {
PyErr_SetString(PyExc_TypeError, "on_error must be callable");
return NULL;
}
// Keep track of the previous handler parameter, so we can decref it when no longer used
static PyObject* last_on_error = NULL;
if (last_on_error) {
Py_DECREF(last_on_error);
last_on_error = NULL;
}
if (on_error == Py_None) {
ERRWRAP2(redirectError(NULL));
} else {
last_on_error = on_error;
Py_INCREF(last_on_error);
ERRWRAP2(redirectError(OnError, last_on_error));
}
Py_RETURN_NONE;
}
static void OnMouse(int event, int x, int y, int flags, void* param)
{
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
PyObject *o = (PyObject*)param;
PyObject *args = Py_BuildValue("iiiiO", event, x, y, flags, PyTuple_GetItem(o, 1));
PyObject *r = PyObject_Call(PyTuple_GetItem(o, 0), args, NULL);
if (r == NULL)
PyErr_Print();
else
Py_DECREF(r);
Py_DECREF(args);
PyGILState_Release(gstate);
}
#ifdef HAVE_OPENCV_HIGHGUI
static PyObject *pycvSetMouseCallback(PyObject*, PyObject *args, PyObject *kw)
{
const char *keywords[] = { "window_name", "on_mouse", "param", NULL };
char* name;
PyObject *on_mouse;
PyObject *param = NULL;
if (!PyArg_ParseTupleAndKeywords(args, kw, "sO|O", (char**)keywords, &name, &on_mouse, &param))
return NULL;
if (!PyCallable_Check(on_mouse)) {
PyErr_SetString(PyExc_TypeError, "on_mouse must be callable");
return NULL;
}
if (param == NULL) {
param = Py_None;
}
PyObject* py_callback_info = Py_BuildValue("OO", on_mouse, param);
static std::map<std::string, PyObject*> registered_callbacks;
std::map<std::string, PyObject*>::iterator i = registered_callbacks.find(name);
if (i != registered_callbacks.end())
{
Py_DECREF(i->second);
i->second = py_callback_info;
}
else
{
registered_callbacks.insert(std::pair<std::string, PyObject*>(std::string(name), py_callback_info));
7 years ago
}
ERRWRAP2(setMouseCallback(name, OnMouse, py_callback_info));
Py_RETURN_NONE;
}
#endif
static void OnChange(int pos, void *param)
{
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
PyObject *o = (PyObject*)param;
PyObject *args = Py_BuildValue("(i)", pos);
PyObject *r = PyObject_Call(PyTuple_GetItem(o, 0), args, NULL);
if (r == NULL)
PyErr_Print();
else
Py_DECREF(r);
Py_DECREF(args);
PyGILState_Release(gstate);
}
#ifdef HAVE_OPENCV_HIGHGUI
static PyObject *pycvCreateTrackbar(PyObject*, PyObject *args)
{
PyObject *on_change;
char* trackbar_name;
char* window_name;
int *value = new int;
int count;
if (!PyArg_ParseTuple(args, "ssiiO", &trackbar_name, &window_name, value, &count, &on_change))
return NULL;
if (!PyCallable_Check(on_change)) {
PyErr_SetString(PyExc_TypeError, "on_change must be callable");
return NULL;
}
PyObject* py_callback_info = Py_BuildValue("OO", on_change, Py_None);
std::string name = std::string(window_name) + ":" + std::string(trackbar_name);
static std::map<std::string, PyObject*> registered_callbacks;
std::map<std::string, PyObject*>::iterator i = registered_callbacks.find(name);
if (i != registered_callbacks.end())
{
Py_DECREF(i->second);
i->second = py_callback_info;
7 years ago
}
else
{
registered_callbacks.insert(std::pair<std::string, PyObject*>(name, py_callback_info));
}
ERRWRAP2(createTrackbar(trackbar_name, window_name, value, count, OnChange, py_callback_info));
Py_RETURN_NONE;
}
static void OnButtonChange(int state, void *param)
{
PyGILState_STATE gstate;
gstate = PyGILState_Ensure();
PyObject *o = (PyObject*)param;
PyObject *args;
if(PyTuple_GetItem(o, 1) != NULL)
{
args = Py_BuildValue("(iO)", state, PyTuple_GetItem(o,1));
}
else
{
args = Py_BuildValue("(i)", state);
}
PyObject *r = PyObject_Call(PyTuple_GetItem(o, 0), args, NULL);
if (r == NULL)
PyErr_Print();
else
Py_DECREF(r);
Py_DECREF(args);
PyGILState_Release(gstate);
}
static PyObject *pycvCreateButton(PyObject*, PyObject *args, PyObject *kw)
{
const char* keywords[] = {"buttonName", "onChange", "userData", "buttonType", "initialButtonState", NULL};
PyObject *on_change;
PyObject *userdata = NULL;
char* button_name;
int button_type = 0;
int initial_button_state = 0;
if (!PyArg_ParseTupleAndKeywords(args, kw, "sO|Oii", (char**)keywords, &button_name, &on_change, &userdata, &button_type, &initial_button_state))
return NULL;
if (!PyCallable_Check(on_change)) {
PyErr_SetString(PyExc_TypeError, "onChange must be callable");
return NULL;
}
if (userdata == NULL) {
userdata = Py_None;
}
PyObject* py_callback_info = Py_BuildValue("OO", on_change, userdata);
std::string name(button_name);
static std::map<std::string, PyObject*> registered_callbacks;
std::map<std::string, PyObject*>::iterator i = registered_callbacks.find(name);
if (i != registered_callbacks.end())
{
Py_DECREF(i->second);
i->second = py_callback_info;
}
else
{
registered_callbacks.insert(std::pair<std::string, PyObject*>(name, py_callback_info));
7 years ago
}
ERRWRAP2(createButton(button_name, OnButtonChange, py_callback_info, button_type, initial_button_state != 0));
Py_RETURN_NONE;
}
#endif
///////////////////////////////////////////////////////////////////////////////////////
static int convert_to_char(PyObject *o, char *dst, const ArgInfo& info)
{
std::string str;
if (getUnicodeString(o, str))
{
*dst = str[0];
return 1;
}
(*dst) = 0;
return failmsg("Expected single character string for argument '%s'", info.name);
}
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wunused-parameter"
# pragma GCC diagnostic ignored "-Wmissing-field-initializers"
#endif
#include "pyopencv_generated_enums.h"
#ifdef CVPY_DYNAMIC_INIT
#define CVPY_TYPE(NAME, STORAGE, SNAME, _1, _2) CVPY_TYPE_DECLARE_DYNAMIC(NAME, STORAGE, SNAME)
#else
#define CVPY_TYPE(NAME, STORAGE, SNAME, _1, _2) CVPY_TYPE_DECLARE(NAME, STORAGE, SNAME)
#endif
#include "pyopencv_generated_types.h"
#undef CVPY_TYPE
#include "pyopencv_custom_headers.h"
#include "pyopencv_generated_types_content.h"
#include "pyopencv_generated_funcs.h"
10 years ago
static PyMethodDef special_methods[] = {
{"redirectError", CV_PY_FN_WITH_KW(pycvRedirectError), "redirectError(onError) -> None"},
#ifdef HAVE_OPENCV_HIGHGUI
{"createTrackbar", (PyCFunction)pycvCreateTrackbar, METH_VARARGS, "createTrackbar(trackbarName, windowName, value, count, onChange) -> None"},
{"createButton", CV_PY_FN_WITH_KW(pycvCreateButton), "createButton(buttonName, onChange [, userData, buttonType, initialButtonState]) -> None"},
{"setMouseCallback", CV_PY_FN_WITH_KW(pycvSetMouseCallback), "setMouseCallback(windowName, onMouse [, param]) -> None"},
#endif
#ifdef HAVE_OPENCV_DNN
{"dnn_registerLayer", CV_PY_FN_WITH_KW(pyopencv_cv_dnn_registerLayer), "registerLayer(type, class) -> None"},
{"dnn_unregisterLayer", CV_PY_FN_WITH_KW(pyopencv_cv_dnn_unregisterLayer), "unregisterLayer(type) -> None"},
#endif
#ifdef HAVE_OPENCV_GAPI
{"GIn", CV_PY_FN_WITH_KW(pyopencv_cv_GIn), "GIn(...) -> GInputProtoArgs"},
{"GOut", CV_PY_FN_WITH_KW(pyopencv_cv_GOut), "GOut(...) -> GOutputProtoArgs"},
{"gin", CV_PY_FN_WITH_KW(pyopencv_cv_gin), "gin(...) -> GRunArgs"},
#endif
{NULL, NULL},
};
/************************************************************************/
/* Module init */
struct ConstDef
{
const char * name;
long long val;
};
static void init_submodule(PyObject * root, const char * name, PyMethodDef * methods, ConstDef * consts)
{
// traverse and create nested submodules
std::string s = name;
size_t i = s.find('.');
while (i < s.length() && i != std::string::npos)
{
size_t j = s.find('.', i);
if (j == std::string::npos)
j = s.length();
std::string short_name = s.substr(i, j-i);
std::string full_name = s.substr(0, j);
i = j+1;
PyObject * d = PyModule_GetDict(root);
PyObject * submod = PyDict_GetItemString(d, short_name.c_str());
if (submod == NULL)
{
submod = PyImport_AddModule(full_name.c_str());
PyDict_SetItemString(d, short_name.c_str(), submod);
}
if (short_name != "")
root = submod;
}
// populate module's dict
PyObject * d = PyModule_GetDict(root);
for (PyMethodDef * m = methods; m->ml_name != NULL; ++m)
{
PyObject * method_obj = PyCFunction_NewEx(m, NULL, NULL);
PyDict_SetItemString(d, m->ml_name, method_obj);
Py_DECREF(method_obj);
}
for (ConstDef * c = consts; c->name != NULL; ++c)
{
PyDict_SetItemString(d, c->name, PyLong_FromLongLong(c->val));
}
}
#include "pyopencv_generated_modules_content.h"
static bool init_body(PyObject * m)
{
#define CVPY_MODULE(NAMESTR, NAME) \
init_submodule(m, MODULESTR NAMESTR, methods_##NAME, consts_##NAME)
#include "pyopencv_generated_modules.h"
#undef CVPY_MODULE
#ifdef CVPY_DYNAMIC_INIT
#define CVPY_TYPE(NAME, _1, _2, BASE, CONSTRUCTOR) CVPY_TYPE_INIT_DYNAMIC(NAME, return false, BASE, CONSTRUCTOR)
PyObject * pyopencv_NoBase_TypePtr = NULL;
#else
#define CVPY_TYPE(NAME, _1, _2, BASE, CONSTRUCTOR) CVPY_TYPE_INIT_STATIC(NAME, return false, BASE, CONSTRUCTOR)
PyTypeObject * pyopencv_NoBase_TypePtr = NULL;
#endif
#include "pyopencv_generated_types.h"
#undef CVPY_TYPE
PyObject* d = PyModule_GetDict(m);
PyDict_SetItemString(d, "__version__", PyString_FromString(CV_VERSION));
PyObject *opencv_error_dict = PyDict_New();
PyDict_SetItemString(opencv_error_dict, "file", Py_None);
PyDict_SetItemString(opencv_error_dict, "func", Py_None);
PyDict_SetItemString(opencv_error_dict, "line", Py_None);
PyDict_SetItemString(opencv_error_dict, "code", Py_None);
PyDict_SetItemString(opencv_error_dict, "msg", Py_None);
PyDict_SetItemString(opencv_error_dict, "err", Py_None);
opencv_error = PyErr_NewException((char*)MODULESTR".error", NULL, opencv_error_dict);
Py_DECREF(opencv_error_dict);
PyDict_SetItemString(d, "error", opencv_error);
#define PUBLISH(I) PyDict_SetItemString(d, #I, PyInt_FromLong(I))
PUBLISH(CV_8U);
PUBLISH(CV_8UC1);
PUBLISH(CV_8UC2);
PUBLISH(CV_8UC3);
PUBLISH(CV_8UC4);
PUBLISH(CV_8S);
PUBLISH(CV_8SC1);
PUBLISH(CV_8SC2);
PUBLISH(CV_8SC3);
PUBLISH(CV_8SC4);
PUBLISH(CV_16U);
PUBLISH(CV_16UC1);
PUBLISH(CV_16UC2);
PUBLISH(CV_16UC3);
PUBLISH(CV_16UC4);
PUBLISH(CV_16S);
PUBLISH(CV_16SC1);
PUBLISH(CV_16SC2);
PUBLISH(CV_16SC3);
PUBLISH(CV_16SC4);
PUBLISH(CV_32S);
PUBLISH(CV_32SC1);
PUBLISH(CV_32SC2);
PUBLISH(CV_32SC3);
PUBLISH(CV_32SC4);
PUBLISH(CV_32F);
PUBLISH(CV_32FC1);
PUBLISH(CV_32FC2);
PUBLISH(CV_32FC3);
PUBLISH(CV_32FC4);
PUBLISH(CV_64F);
PUBLISH(CV_64FC1);
PUBLISH(CV_64FC2);
PUBLISH(CV_64FC3);
PUBLISH(CV_64FC4);
#undef PUBLISH
return true;
}
#if defined(__GNUC__)
#pragma GCC visibility push(default)
#endif
Merge pull request #15915 from VadimLevin:dev/norm_fix Fix implicit conversion from array to scalar in python bindings * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type. * Fix wrong conversion behavior for primitive types - Introduce ArgTypeInfo namedtuple instead of plain tuple. If strict conversion parameter for type is set to true, it is handled like object argument in PyArg_ParseTupleAndKeywords and converted to concrete type with the appropriate pyopencv_to function call. - Remove deadcode and unused variables. - Fix implicit conversion from numpy array with 1 element to scalar - Fix narrowing conversion to size_t type.· - Enable tests with wrong conversion behavior - Restrict passing None as value - Restrict bool to integer/floating types conversion * Add PyIntType support for Python 2 * Remove possible narrowing conversion of size_t * Bindings conversion update - Remove unused macro - Add better conversion for types to numpy types descriptors - Add argument name to fail messages - NoneType treated as a valid argument. Better handling will be added as a standalone patch * Add descriptor specialization for size_t * Add check for signed to unsigned integer conversion safety - If signed integer is positive it can be safely converted to unsigned - Add check for plain python 2 objects - Add check for numpy scalars - Add simple type_traits implementation for better code style * Resolve type "overflow" false negative in safe casting check - Move type_traits to separate header * Add copyright message to type_traits.hpp * Limit conversion scope for integral numpy types - Made canBeSafelyCasted specialized only for size_t, so type_traits header became unused and was removed. - Added clarification about descriptor pointer
5 years ago
#if defined(CV_PYTHON_3)
// === Python 3
static struct PyModuleDef cv2_moduledef =
{
PyModuleDef_HEAD_INIT,
MODULESTR,
"Python wrapper for OpenCV.",
-1, /* size of per-interpreter state of the module,
or -1 if the module keeps state in global variables. */
10 years ago
special_methods
};
PyMODINIT_FUNC PyInit_cv2();
PyObject* PyInit_cv2()
{
import_array(); // from numpy
PyObject* m = PyModule_Create(&cv2_moduledef);
if (!init_body(m))
return NULL;
return m;
}
#else
// === Python 2
PyMODINIT_FUNC initcv2();
void initcv2()
{
import_array(); // from numpy
PyObject* m = Py_InitModule(MODULESTR, special_methods);
init_body(m);
}
#endif