|
|
|
#!/usr/bin/env python
|
|
|
|
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
|
|
import random
|
|
|
|
import time
|
|
|
|
import math
|
|
|
|
import sys
|
|
|
|
import array
|
|
|
|
import tarfile
|
|
|
|
import hashlib
|
|
|
|
import os
|
|
|
|
import getopt
|
|
|
|
import operator
|
|
|
|
import functools
|
|
|
|
import numpy as np
|
|
|
|
import cv2
|
|
|
|
import argparse
|
|
|
|
|
|
|
|
# Python 3 moved urlopen to urllib.requests
|
|
|
|
try:
|
|
|
|
from urllib.request import urlopen
|
|
|
|
except ImportError:
|
|
|
|
from urllib import urlopen
|
|
|
|
|
|
|
|
class NewOpenCVTests(unittest.TestCase):
|
|
|
|
|
|
|
|
# path to local repository folder containing 'samples' folder
|
|
|
|
repoPath = None
|
|
|
|
# github repository url
|
|
|
|
repoUrl = 'https://raw.github.com/Itseez/opencv/master'
|
|
|
|
|
|
|
|
def get_sample(self, filename, iscolor = cv2.IMREAD_COLOR):
|
|
|
|
if not filename in self.image_cache:
|
|
|
|
filedata = None
|
|
|
|
if NewOpenCVTests.repoPath is not None:
|
|
|
|
candidate = NewOpenCVTests.repoPath + '/' + filename
|
|
|
|
if os.path.isfile(candidate):
|
|
|
|
with open(candidate, 'rb') as f:
|
|
|
|
filedata = f.read()
|
|
|
|
if filedata is None:
|
|
|
|
filedata = urlopen(NewOpenCVTests.repoUrl + '/' + filename).read()
|
|
|
|
self.image_cache[filename] = cv2.imdecode(np.fromstring(filedata, dtype=np.uint8), iscolor)
|
|
|
|
return self.image_cache[filename]
|
|
|
|
|
|
|
|
def setUp(self):
|
|
|
|
self.image_cache = {}
|
|
|
|
|
|
|
|
def hashimg(self, im):
|
|
|
|
""" Compute a hash for an image, useful for image comparisons """
|
|
|
|
return hashlib.md5(im.tostring()).digest()
|
|
|
|
|
|
|
|
if sys.version_info[:2] == (2, 6):
|
|
|
|
def assertLess(self, a, b, msg=None):
|
|
|
|
if not a < b:
|
|
|
|
self.fail('%s not less than %s' % (repr(a), repr(b)))
|
|
|
|
|
|
|
|
def assertLessEqual(self, a, b, msg=None):
|
|
|
|
if not a <= b:
|
|
|
|
self.fail('%s not less than or equal to %s' % (repr(a), repr(b)))
|
|
|
|
|
|
|
|
def assertGreater(self, a, b, msg=None):
|
|
|
|
if not a > b:
|
|
|
|
self.fail('%s not greater than %s' % (repr(a), repr(b)))
|
|
|
|
|
|
|
|
# Tests to run first; check the handful of basic operations that the later tests rely on
|
|
|
|
|
|
|
|
class Hackathon244Tests(NewOpenCVTests):
|
|
|
|
|
|
|
|
def test_int_array(self):
|
|
|
|
a = np.array([-1, 2, -3, 4, -5])
|
|
|
|
absa0 = np.abs(a)
|
|
|
|
self.assertTrue(cv2.norm(a, cv2.NORM_L1) == 15)
|
|
|
|
absa1 = cv2.absdiff(a, 0)
|
|
|
|
self.assertEqual(cv2.norm(absa1, absa0, cv2.NORM_INF), 0)
|
|
|
|
|
|
|
|
def test_imencode(self):
|
|
|
|
a = np.zeros((480, 640), dtype=np.uint8)
|
|
|
|
flag, ajpg = cv2.imencode("img_q90.jpg", a, [cv2.IMWRITE_JPEG_QUALITY, 90])
|
|
|
|
self.assertEqual(flag, True)
|
|
|
|
self.assertEqual(ajpg.dtype, np.uint8)
|
|
|
|
self.assertGreater(ajpg.shape[0], 1)
|
|
|
|
self.assertEqual(ajpg.shape[1], 1)
|
|
|
|
|
|
|
|
def test_projectPoints(self):
|
|
|
|
objpt = np.float64([[1,2,3]])
|
|
|
|
imgpt0, jac0 = cv2.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), np.float64([]))
|
|
|
|
imgpt1, jac1 = cv2.projectPoints(objpt, np.zeros(3), np.zeros(3), np.eye(3), None)
|
|
|
|
self.assertEqual(imgpt0.shape, (objpt.shape[0], 1, 2))
|
|
|
|
self.assertEqual(imgpt1.shape, imgpt0.shape)
|
|
|
|
self.assertEqual(jac0.shape, jac1.shape)
|
|
|
|
self.assertEqual(jac0.shape[0], 2*objpt.shape[0])
|
|
|
|
|
|
|
|
def test_estimateAffine3D(self):
|
|
|
|
pattern_size = (11, 8)
|
|
|
|
pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
|
|
|
|
pattern_points[:,:2] = np.indices(pattern_size).T.reshape(-1, 2)
|
|
|
|
pattern_points *= 10
|
|
|
|
(retval, out, inliers) = cv2.estimateAffine3D(pattern_points, pattern_points)
|
|
|
|
self.assertEqual(retval, 1)
|
|
|
|
if cv2.norm(out[2,:]) < 1e-3:
|
|
|
|
out[2,2]=1
|
|
|
|
self.assertLess(cv2.norm(out, np.float64([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0]])), 1e-3)
|
|
|
|
self.assertEqual(cv2.countNonZero(inliers), pattern_size[0]*pattern_size[1])
|
|
|
|
|
|
|
|
def test_fast(self):
|
|
|
|
fd = cv2.FastFeatureDetector_create(30, True)
|
|
|
|
img = self.get_sample("samples/data/right02.jpg", 0)
|
|
|
|
img = cv2.medianBlur(img, 3)
|
|
|
|
imgc = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
|
|
|
keypoints = fd.detect(img)
|
|
|
|
self.assertTrue(600 <= len(keypoints) <= 700)
|
|
|
|
for kpt in keypoints:
|
|
|
|
self.assertNotEqual(kpt.response, 0)
|
|
|
|
|
|
|
|
def check_close_angles(self, a, b, angle_delta):
|
|
|
|
self.assertTrue(abs(a - b) <= angle_delta or
|
|
|
|
abs(360 - abs(a - b)) <= angle_delta)
|
|
|
|
|
|
|
|
def check_close_pairs(self, a, b, delta):
|
|
|
|
self.assertLessEqual(abs(a[0] - b[0]), delta)
|
|
|
|
self.assertLessEqual(abs(a[1] - b[1]), delta)
|
|
|
|
|
|
|
|
def check_close_boxes(self, a, b, delta, angle_delta):
|
|
|
|
self.check_close_pairs(a[0], b[0], delta)
|
|
|
|
self.check_close_pairs(a[1], b[1], delta)
|
|
|
|
self.check_close_angles(a[2], b[2], angle_delta)
|
|
|
|
|
|
|
|
def test_geometry(self):
|
|
|
|
npt = 100
|
|
|
|
np.random.seed(244)
|
|
|
|
a = np.random.randn(npt,2).astype('float32')*50 + 150
|
|
|
|
|
|
|
|
img = np.zeros((300, 300, 3), dtype='uint8')
|
|
|
|
be = cv2.fitEllipse(a)
|
|
|
|
br = cv2.minAreaRect(a)
|
|
|
|
mc, mr = cv2.minEnclosingCircle(a)
|
|
|
|
|
|
|
|
be0 = ((150.2511749267578, 150.77322387695312), (158.024658203125, 197.57696533203125), 37.57804489135742)
|
|
|
|
br0 = ((161.2974090576172, 154.41793823242188), (199.2301483154297, 207.7177734375), -9.164555549621582)
|
|
|
|
mc0, mr0 = (160.41790771484375, 144.55152893066406), 136.713500977
|
|
|
|
|
|
|
|
self.check_close_boxes(be, be0, 5, 15)
|
|
|
|
self.check_close_boxes(br, br0, 5, 15)
|
|
|
|
self.check_close_pairs(mc, mc0, 5)
|
|
|
|
self.assertLessEqual(abs(mr - mr0), 5)
|
|
|
|
|
|
|
|
def test_inheritance(self):
|
|
|
|
bm = cv2.StereoBM_create()
|
|
|
|
bm.getPreFilterCap() # from StereoBM
|
|
|
|
bm.getBlockSize() # from SteroMatcher
|
|
|
|
|
|
|
|
boost = cv2.ml.Boost_create()
|
|
|
|
boost.getBoostType() # from ml::Boost
|
|
|
|
boost.getMaxDepth() # from ml::DTrees
|
|
|
|
boost.isClassifier() # from ml::StatModel
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
parser = argparse.ArgumentParser(description='run OpenCV python tests')
|
|
|
|
parser.add_argument('--repo', help='use sample image files from local git repository (path to folder), '
|
|
|
|
'if not set, samples will be downloaded from github.com')
|
|
|
|
parser.add_argument('--data', help='<not used> use data files from local folder (path to folder), '
|
|
|
|
'if not set, data files will be downloaded from docs.opencv.org')
|
|
|
|
args, other = parser.parse_known_args()
|
|
|
|
print("Testing OpenCV", cv2.__version__)
|
|
|
|
print("Local repo path:", args.repo)
|
|
|
|
NewOpenCVTests.repoPath = args.repo
|
|
|
|
random.seed(0)
|
|
|
|
unit_argv = [sys.argv[0]] + other;
|
|
|
|
unittest.main(argv=unit_argv)
|