|
|
|
#include "opencv2/ml/ml.hpp"
|
|
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
|
|
|
|
int main( int /*argc*/, char** /*argv*/ )
|
|
|
|
{
|
|
|
|
const int N = 4;
|
|
|
|
const int N1 = (int)sqrt((double)N);
|
|
|
|
const Scalar colors[] =
|
|
|
|
{
|
|
|
|
Scalar(0,0,255), Scalar(0,255,0),
|
|
|
|
Scalar(0,255,255),Scalar(255,255,0)
|
|
|
|
};
|
|
|
|
|
|
|
|
int i, j;
|
|
|
|
int nsamples = 100;
|
|
|
|
Mat samples( nsamples, 2, CV_32FC1 );
|
|
|
|
Mat labels;
|
|
|
|
Mat img = Mat::zeros( Size( 500, 500 ), CV_8UC3 );
|
|
|
|
Mat sample( 1, 2, CV_32FC1 );
|
|
|
|
CvEM em_model;
|
|
|
|
CvEMParams params;
|
|
|
|
|
|
|
|
samples = samples.reshape(2, 0);
|
|
|
|
for( i = 0; i < N; i++ )
|
|
|
|
{
|
|
|
|
// form the training samples
|
|
|
|
Mat samples_part = samples.rowRange(i*nsamples/N, (i+1)*nsamples/N );
|
|
|
|
|
|
|
|
Scalar mean(((i%N1)+1)*img.rows/(N1+1),
|
|
|
|
((i/N1)+1)*img.rows/(N1+1));
|
|
|
|
Scalar sigma(30,30);
|
|
|
|
randn( samples_part, mean, sigma );
|
|
|
|
}
|
|
|
|
samples = samples.reshape(1, 0);
|
|
|
|
|
|
|
|
// initialize model parameters
|
|
|
|
params.covs = NULL;
|
|
|
|
params.means = NULL;
|
|
|
|
params.weights = NULL;
|
|
|
|
params.probs = NULL;
|
|
|
|
params.nclusters = N;
|
|
|
|
params.cov_mat_type = CvEM::COV_MAT_SPHERICAL;
|
|
|
|
params.start_step = CvEM::START_AUTO_STEP;
|
|
|
|
params.term_crit.max_iter = 300;
|
|
|
|
params.term_crit.epsilon = 0.1;
|
|
|
|
params.term_crit.type = CV_TERMCRIT_ITER|CV_TERMCRIT_EPS;
|
|
|
|
|
|
|
|
// cluster the data
|
|
|
|
em_model.train( samples, Mat(), params, &labels );
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
// the piece of code shows how to repeatedly optimize the model
|
|
|
|
// with less-constrained parameters
|
|
|
|
//(COV_MAT_DIAGONAL instead of COV_MAT_SPHERICAL)
|
|
|
|
// when the output of the first stage is used as input for the second one.
|
|
|
|
CvEM em_model2;
|
|
|
|
params.cov_mat_type = CvEM::COV_MAT_DIAGONAL;
|
|
|
|
params.start_step = CvEM::START_E_STEP;
|
|
|
|
params.means = em_model.get_means();
|
|
|
|
params.covs = (const CvMat**)em_model.get_covs();
|
|
|
|
params.weights = em_model.get_weights();
|
|
|
|
|
|
|
|
em_model2.train( samples, Mat(), params, &labels );
|
|
|
|
// to use em_model2, replace em_model.predict()
|
|
|
|
// with em_model2.predict() below
|
|
|
|
#endif
|
|
|
|
// classify every image pixel
|
|
|
|
for( i = 0; i < img.rows; i++ )
|
|
|
|
{
|
|
|
|
for( j = 0; j < img.cols; j++ )
|
|
|
|
{
|
|
|
|
sample.at<float>(0) = (float)j;
|
|
|
|
sample.at<float>(1) = (float)i;
|
|
|
|
int response = cvRound(em_model.predict( sample ));
|
|
|
|
Scalar c = colors[response];
|
|
|
|
|
|
|
|
circle( img, Point(j, i), 1, c*0.75, CV_FILLED );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//draw the clustered samples
|
|
|
|
for( i = 0; i < nsamples; i++ )
|
|
|
|
{
|
|
|
|
Point pt(cvRound(samples.at<float>(i, 0)), cvRound(samples.at<float>(i, 1)));
|
|
|
|
circle( img, pt, 1, colors[labels.at<int>(i)], CV_FILLED );
|
|
|
|
}
|
|
|
|
|
|
|
|
imshow( "EM-clustering result", img );
|
|
|
|
waitKey(0);
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|