mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
228 lines
7.9 KiB
228 lines
7.9 KiB
6 years ago
|
// This file is part of OpenCV project.
|
||
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||
|
// of this distribution and at http://opencv.org/license.html
|
||
|
|
||
|
#include "test_invariance_utils.hpp"
|
||
|
|
||
|
namespace opencv_test { namespace {
|
||
|
|
||
|
#define SHOW_DEBUG_LOG 1
|
||
|
|
||
|
typedef tuple<std::string, Ptr<FeatureDetector>, float, float> String_FeatureDetector_Float_Float_t;
|
||
|
|
||
|
|
||
|
static
|
||
|
void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
|
||
|
const vector<KeyPoint>& keypoints1,
|
||
|
vector<DMatch>& matches)
|
||
|
{
|
||
|
vector<Point2f> points0;
|
||
|
KeyPoint::convert(keypoints0, points0);
|
||
|
Mat points0t;
|
||
|
if(H.empty())
|
||
|
points0t = Mat(points0);
|
||
|
else
|
||
|
perspectiveTransform(Mat(points0), points0t, H);
|
||
|
|
||
|
matches.clear();
|
||
|
vector<uchar> usedMask(keypoints1.size(), 0);
|
||
|
for(int i0 = 0; i0 < static_cast<int>(keypoints0.size()); i0++)
|
||
|
{
|
||
|
int nearestPointIndex = -1;
|
||
|
float maxIntersectRatio = 0.f;
|
||
|
const float r0 = 0.5f * keypoints0[i0].size;
|
||
|
for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
|
||
|
{
|
||
|
if(nearestPointIndex >= 0 && usedMask[i1])
|
||
|
continue;
|
||
|
|
||
|
float r1 = 0.5f * keypoints1[i1].size;
|
||
|
float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(i0), r0,
|
||
|
keypoints1[i1].pt, r1);
|
||
|
if(intersectRatio > maxIntersectRatio)
|
||
|
{
|
||
|
maxIntersectRatio = intersectRatio;
|
||
|
nearestPointIndex = static_cast<int>(i1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio));
|
||
|
if(nearestPointIndex >= 0)
|
||
|
usedMask[nearestPointIndex] = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
class DetectorInvariance : public TestWithParam<String_FeatureDetector_Float_Float_t>
|
||
|
{
|
||
|
protected:
|
||
|
virtual void SetUp() {
|
||
|
// Read test data
|
||
|
const std::string filename = cvtest::TS::ptr()->get_data_path() + get<0>(GetParam());
|
||
|
image0 = imread(filename);
|
||
|
ASSERT_FALSE(image0.empty()) << "couldn't read input image";
|
||
|
|
||
|
featureDetector = get<1>(GetParam());
|
||
|
minKeyPointMatchesRatio = get<2>(GetParam());
|
||
|
minInliersRatio = get<3>(GetParam());
|
||
|
}
|
||
|
|
||
|
Ptr<FeatureDetector> featureDetector;
|
||
|
float minKeyPointMatchesRatio;
|
||
|
float minInliersRatio;
|
||
|
Mat image0;
|
||
|
};
|
||
|
|
||
|
typedef DetectorInvariance DetectorScaleInvariance;
|
||
|
typedef DetectorInvariance DetectorRotationInvariance;
|
||
|
|
||
|
TEST_P(DetectorRotationInvariance, rotation)
|
||
|
{
|
||
|
Mat image1, mask1;
|
||
|
const int borderSize = 16;
|
||
|
Mat mask0(image0.size(), CV_8UC1, Scalar(0));
|
||
|
mask0(Rect(borderSize, borderSize, mask0.cols - 2*borderSize, mask0.rows - 2*borderSize)).setTo(Scalar(255));
|
||
|
|
||
|
vector<KeyPoint> keypoints0;
|
||
|
featureDetector->detect(image0, keypoints0, mask0);
|
||
|
EXPECT_GE(keypoints0.size(), 15u);
|
||
|
|
||
|
const int maxAngle = 360, angleStep = 15;
|
||
|
for(int angle = 0; angle < maxAngle; angle += angleStep)
|
||
|
{
|
||
|
Mat H = rotateImage(image0, mask0, static_cast<float>(angle), image1, mask1);
|
||
|
|
||
|
vector<KeyPoint> keypoints1;
|
||
|
featureDetector->detect(image1, keypoints1, mask1);
|
||
|
|
||
|
vector<DMatch> matches;
|
||
|
matchKeyPoints(keypoints0, H, keypoints1, matches);
|
||
|
|
||
|
int angleInliersCount = 0;
|
||
|
|
||
|
const float minIntersectRatio = 0.5f;
|
||
|
int keyPointMatchesCount = 0;
|
||
|
for(size_t m = 0; m < matches.size(); m++)
|
||
|
{
|
||
|
if(matches[m].distance < minIntersectRatio)
|
||
|
continue;
|
||
|
|
||
|
keyPointMatchesCount++;
|
||
|
|
||
|
// Check does this inlier have consistent angles
|
||
|
const float maxAngleDiff = 15.f; // grad
|
||
|
float angle0 = keypoints0[matches[m].queryIdx].angle;
|
||
|
float angle1 = keypoints1[matches[m].trainIdx].angle;
|
||
|
ASSERT_FALSE(angle0 == -1 || angle1 == -1) << "Given FeatureDetector is not rotation invariant, it can not be tested here.";
|
||
|
ASSERT_GE(angle0, 0.f);
|
||
|
ASSERT_LT(angle0, 360.f);
|
||
|
ASSERT_GE(angle1, 0.f);
|
||
|
ASSERT_LT(angle1, 360.f);
|
||
|
|
||
|
float rotAngle0 = angle0 + angle;
|
||
|
if(rotAngle0 >= 360.f)
|
||
|
rotAngle0 -= 360.f;
|
||
|
|
||
|
float angleDiff = std::max(rotAngle0, angle1) - std::min(rotAngle0, angle1);
|
||
|
angleDiff = std::min(angleDiff, static_cast<float>(360.f - angleDiff));
|
||
|
ASSERT_GE(angleDiff, 0.f);
|
||
|
bool isAngleCorrect = angleDiff < maxAngleDiff;
|
||
|
if(isAngleCorrect)
|
||
|
angleInliersCount++;
|
||
|
}
|
||
|
|
||
|
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints0.size();
|
||
|
EXPECT_GE(keyPointMatchesRatio, minKeyPointMatchesRatio) << "angle: " << angle;
|
||
|
|
||
|
if(keyPointMatchesCount)
|
||
|
{
|
||
|
float angleInliersRatio = static_cast<float>(angleInliersCount) / keyPointMatchesCount;
|
||
|
EXPECT_GE(angleInliersRatio, minInliersRatio) << "angle: " << angle;
|
||
|
}
|
||
|
#if SHOW_DEBUG_LOG
|
||
|
std::cout
|
||
|
<< "angle = " << angle
|
||
|
<< ", keypoints = " << keypoints1.size()
|
||
|
<< ", keyPointMatchesRatio = " << keyPointMatchesRatio
|
||
|
<< ", angleInliersRatio = " << (keyPointMatchesCount ? (static_cast<float>(angleInliersCount) / keyPointMatchesCount) : 0)
|
||
|
<< std::endl;
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
TEST_P(DetectorScaleInvariance, scale)
|
||
|
{
|
||
|
vector<KeyPoint> keypoints0;
|
||
|
featureDetector->detect(image0, keypoints0);
|
||
|
EXPECT_GE(keypoints0.size(), 15u);
|
||
|
|
||
|
for(int scaleIdx = 1; scaleIdx <= 3; scaleIdx++)
|
||
|
{
|
||
|
float scale = 1.f + scaleIdx * 0.5f;
|
||
|
Mat image1;
|
||
|
resize(image0, image1, Size(), 1./scale, 1./scale, INTER_LINEAR_EXACT);
|
||
|
|
||
|
vector<KeyPoint> keypoints1, osiKeypoints1; // osi - original size image
|
||
|
featureDetector->detect(image1, keypoints1);
|
||
|
EXPECT_GE(keypoints1.size(), 15u);
|
||
|
EXPECT_LE(keypoints1.size(), keypoints0.size()) << "Strange behavior of the detector. "
|
||
|
"It gives more points count in an image of the smaller size.";
|
||
|
|
||
|
scaleKeyPoints(keypoints1, osiKeypoints1, scale);
|
||
|
vector<DMatch> matches;
|
||
|
// image1 is query image (it's reduced image0)
|
||
|
// image0 is train image
|
||
|
matchKeyPoints(osiKeypoints1, Mat(), keypoints0, matches);
|
||
|
|
||
|
const float minIntersectRatio = 0.5f;
|
||
|
int keyPointMatchesCount = 0;
|
||
|
int scaleInliersCount = 0;
|
||
|
|
||
|
for(size_t m = 0; m < matches.size(); m++)
|
||
|
{
|
||
|
if(matches[m].distance < minIntersectRatio)
|
||
|
continue;
|
||
|
|
||
|
keyPointMatchesCount++;
|
||
|
|
||
|
// Check does this inlier have consistent sizes
|
||
|
const float maxSizeDiff = 0.8f;//0.9f; // grad
|
||
|
float size0 = keypoints0[matches[m].trainIdx].size;
|
||
|
float size1 = osiKeypoints1[matches[m].queryIdx].size;
|
||
|
ASSERT_GT(size0, 0);
|
||
|
ASSERT_GT(size1, 0);
|
||
|
if(std::min(size0, size1) > maxSizeDiff * std::max(size0, size1))
|
||
|
scaleInliersCount++;
|
||
|
}
|
||
|
|
||
|
float keyPointMatchesRatio = static_cast<float>(keyPointMatchesCount) / keypoints1.size();
|
||
|
EXPECT_GE(keyPointMatchesRatio, minKeyPointMatchesRatio);
|
||
|
|
||
|
if(keyPointMatchesCount)
|
||
|
{
|
||
|
float scaleInliersRatio = static_cast<float>(scaleInliersCount) / keyPointMatchesCount;
|
||
|
EXPECT_GE(scaleInliersRatio, minInliersRatio);
|
||
|
}
|
||
|
#if SHOW_DEBUG_LOG
|
||
|
std::cout
|
||
|
<< "scale = " << scale
|
||
|
<< ", keyPointMatchesRatio = " << keyPointMatchesRatio
|
||
|
<< ", scaleInliersRatio = " << (keyPointMatchesCount ? static_cast<float>(scaleInliersCount) / keyPointMatchesCount : 0)
|
||
|
<< std::endl;
|
||
|
#endif
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#undef SHOW_DEBUG_LOG
|
||
|
}} // namespace
|
||
|
|
||
|
namespace std {
|
||
|
using namespace opencv_test;
|
||
|
static inline void PrintTo(const String_FeatureDetector_Float_Float_t& v, std::ostream* os)
|
||
|
{
|
||
|
*os << "(\"" << get<0>(v)
|
||
|
<< "\", " << get<2>(v)
|
||
|
<< ", " << get<3>(v)
|
||
|
<< ")";
|
||
|
}
|
||
|
} // namespace
|