mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
92 lines
3.1 KiB
92 lines
3.1 KiB
13 years ago
|
/*
|
||
|
* Copyright (c) 2011. Philipp Wagner <bytefish[at]gmx[dot]de>.
|
||
|
* Released to public domain under terms of the BSD Simplified license.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of the organization nor the names of its contributors
|
||
|
* may be used to endorse or promote products derived from this software
|
||
|
* without specific prior written permission.
|
||
|
*
|
||
|
* See <http://www.opensource.org/licenses/bsd-license>
|
||
|
*/
|
||
|
|
||
|
#include "opencv2/opencv.hpp"
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <fstream>
|
||
|
#include <sstream>
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace std;
|
||
|
|
||
|
void read_csv(const string& filename, vector<Mat>& images, vector<int>& labels, char separator = ';') {
|
||
|
std::ifstream file(filename.c_str(), ifstream::in);
|
||
|
if (!file)
|
||
|
throw std::exception();
|
||
|
string line, path, classlabel;
|
||
|
while (getline(file, line)) {
|
||
|
stringstream liness(line);
|
||
|
getline(liness, path, separator);
|
||
|
getline(liness, classlabel);
|
||
|
images.push_back(imread(path, 0));
|
||
|
labels.push_back(atoi(classlabel.c_str()));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int main(int argc, const char *argv[]) {
|
||
|
// check for command line arguments
|
||
|
if (argc != 2) {
|
||
|
cout << "usage: " << argv[0] << " <csv.ext>" << endl;
|
||
|
exit(1);
|
||
|
}
|
||
|
// path to your CSV
|
||
|
string fn_csv = string(argv[1]);
|
||
|
// images and corresponding labels
|
||
|
vector<Mat> images;
|
||
|
vector<int> labels;
|
||
|
// read in the data
|
||
|
try {
|
||
|
read_csv(fn_csv, images, labels);
|
||
|
} catch (exception& e) {
|
||
|
cerr << "Error opening file \"" << fn_csv << "\"." << endl;
|
||
|
exit(1);
|
||
|
}
|
||
|
// get width and height
|
||
|
//int width = images[0].cols;
|
||
|
int height = images[0].rows;
|
||
|
// get test instances
|
||
|
Mat testSample = images[images.size() - 1];
|
||
|
int testLabel = labels[labels.size() - 1];
|
||
|
// ... and delete last element
|
||
|
images.pop_back();
|
||
|
labels.pop_back();
|
||
|
// build the Fisherfaces model
|
||
|
Ptr<FaceRecognizer> model = createFisherFaceRecognizer();
|
||
|
model->train(images, labels);
|
||
|
// test model
|
||
|
int predicted = model->predict(testSample);
|
||
|
cout << "predicted class = " << predicted << endl;
|
||
|
cout << "actual class = " << testLabel << endl;
|
||
|
// get the eigenvectors
|
||
|
Mat W = model->eigenvectors();
|
||
|
// show first 10 fisherfaces
|
||
|
for (int i = 0; i < min(10, W.cols); i++) {
|
||
|
// get eigenvector #i
|
||
|
Mat ev = W.col(i).clone();
|
||
|
// reshape to original site
|
||
|
Mat grayscale, cgrayscale;
|
||
|
cvtColor(ev.reshape(1, height), grayscale, COLOR_BGR2GRAY);
|
||
|
// show image (with Jet colormap)
|
||
|
applyColorMap(grayscale, cgrayscale, COLORMAP_JET);
|
||
|
imshow(format("%d", i), cgrayscale);
|
||
|
}
|
||
|
waitKey(0);
|
||
|
return 0;
|
||
|
}
|