Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

457 lines
14 KiB

#include <opencv2/opencv.hpp>
#include <string>
#include <iostream>
#include <fstream>
#include <vector>
#include <time.h>
using namespace cv;
using namespace std;
void get_svm_detector(const SVM& svm, vector< float > & hog_detector );
void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData );
void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst );
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size );
Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues, const Size & size );
void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size );
void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels );
void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color );
void test_it( const Size & size );
void get_svm_detector(const SVM& svm, vector< float > & hog_detector )
{
// get the number of variables
const int var_all = svm.get_var_count();
// get the number of support vectors
const int sv_total = svm.get_support_vector_count();
// get the decision function
const CvSVMDecisionFunc* decision_func = svm.get_decision_function();
// get the support vectors
const float** sv = new const float*[ sv_total ];
for( int i = 0 ; i < sv_total ; ++i )
sv[ i ] = svm.get_support_vector(i);
CV_Assert( var_all > 0 &&
sv_total > 0 &&
decision_func != 0 &&
decision_func->alpha != 0 &&
decision_func->sv_count == sv_total );
float svi = 0.f;
hog_detector.clear(); //clear stuff in vector.
hog_detector.reserve( var_all + 1 ); //reserve place for memory efficiency.
/**
* hog_detector^i = \sum_j support_vector_j^i * \alpha_j
* hog_detector^dim = -\rho
*/
for( int i = 0 ; i < var_all ; ++i )
{
svi = 0.f;
for( int j = 0 ; j < sv_total ; ++j )
{
if( decision_func->sv_index != NULL ) // sometime the sv_index isn't store on YML/XML.
svi += (float)( sv[decision_func->sv_index[j]][i] * decision_func->alpha[ j ] );
else
svi += (float)( sv[j][i] * decision_func->alpha[ j ] );
}
hog_detector.push_back( svi );
}
hog_detector.push_back( (float)-decision_func->rho );
delete[] sv;
}
/*
* Convert training/testing set to be used by OpenCV Machine Learning algorithms.
* TrainData is a matrix of size (#samples x max(#cols,#rows) per samples), in 32FC1.
* Transposition of samples are made if needed.
*/
void convert_to_ml(const std::vector< cv::Mat > & train_samples, cv::Mat& trainData )
{
//--Convert data
const int rows = (int)train_samples.size();
const int cols = (int)std::max( train_samples[0].cols, train_samples[0].rows );
cv::Mat tmp(1, cols, CV_32FC1); //< used for transposition if needed
trainData = cv::Mat(rows, cols, CV_32FC1 );
vector< Mat >::const_iterator itr = train_samples.begin();
vector< Mat >::const_iterator end = train_samples.end();
for( int i = 0 ; itr != end ; ++itr, ++i )
{
CV_Assert( itr->cols == 1 ||
itr->rows == 1 );
if( itr->cols == 1 )
{
transpose( *(itr), tmp );
tmp.copyTo( trainData.row( i ) );
}
else if( itr->rows == 1 )
{
itr->copyTo( trainData.row( i ) );
}
}
}
void load_images( const string & prefix, const string & filename, vector< Mat > & img_lst )
{
string line;
ifstream file;
file.open( (prefix+filename).c_str() );
if( !file.is_open() )
{
cerr << "Unable to open the list of images from " << filename << " filename." << endl;
exit( -1 );
}
while( 1 )
{
getline( file, line );
if( line == "" ) // no more file to read
break;
Mat img = imread( (prefix+line).c_str() ); // load the image
if( !img.data ) // invalid image, just skip it.
continue;
#ifdef _DEBUG
imshow( "image", img );
waitKey( 10 );
#endif
img_lst.push_back( img.clone() );
}
}
void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, const Size & size )
{
Rect box;
box.width = size.width;
box.height = size.height;
const int size_x = box.width;
const int size_y = box.height;
srand( time( NULL ) );
vector< Mat >::const_iterator img = full_neg_lst.begin();
vector< Mat >::const_iterator end = full_neg_lst.end();
for( ; img != end ; ++img )
{
box.x = rand() % (img->cols - size_x);
box.y = rand() % (img->rows - size_y);
Mat roi = (*img)(box);
neg_lst.push_back( roi.clone() );
#ifdef _DEBUG
imshow( "img", roi.clone() );
waitKey( 10 );
#endif
}
}
// From http://www.juergenwiki.de/work/wiki/doku.php?id=public:hog_descriptor_computation_and_visualization
Mat get_hogdescriptor_visu(Mat& color_origImg, vector<float>& descriptorValues, const Size & size )
{
const int DIMX = size.width;
const int DIMY = size.height;
float zoomFac = 3;
Mat visu;
resize(color_origImg, visu, Size(color_origImg.cols*zoomFac, color_origImg.rows*zoomFac));
int cellSize = 8;
int gradientBinSize = 9;
float radRangeForOneBin = CV_PI/(float)gradientBinSize; // dividing 180<EFBFBD> into 9 bins, how large (in rad) is one bin?
// prepare data structure: 9 orientation / gradient strenghts for each cell
int cells_in_x_dir = DIMX / cellSize;
int cells_in_y_dir = DIMY / cellSize;
float*** gradientStrengths = new float**[cells_in_y_dir];
int** cellUpdateCounter = new int*[cells_in_y_dir];
for (int y=0; y<cells_in_y_dir; y++)
{
gradientStrengths[y] = new float*[cells_in_x_dir];
cellUpdateCounter[y] = new int[cells_in_x_dir];
for (int x=0; x<cells_in_x_dir; x++)
{
gradientStrengths[y][x] = new float[gradientBinSize];
cellUpdateCounter[y][x] = 0;
for (int bin=0; bin<gradientBinSize; bin++)
gradientStrengths[y][x][bin] = 0.0;
}
}
// nr of blocks = nr of cells - 1
// since there is a new block on each cell (overlapping blocks!) but the last one
int blocks_in_x_dir = cells_in_x_dir - 1;
int blocks_in_y_dir = cells_in_y_dir - 1;
// compute gradient strengths per cell
int descriptorDataIdx = 0;
int cellx = 0;
int celly = 0;
for (int blockx=0; blockx<blocks_in_x_dir; blockx++)
{
for (int blocky=0; blocky<blocks_in_y_dir; blocky++)
{
// 4 cells per block ...
for (int cellNr=0; cellNr<4; cellNr++)
{
// compute corresponding cell nr
cellx = blockx;
celly = blocky;
if (cellNr==1) celly++;
if (cellNr==2) cellx++;
if (cellNr==3)
{
cellx++;
celly++;
}
for (int bin=0; bin<gradientBinSize; bin++)
{
float gradientStrength = descriptorValues[ descriptorDataIdx ];
descriptorDataIdx++;
gradientStrengths[celly][cellx][bin] += gradientStrength;
} // for (all bins)
// note: overlapping blocks lead to multiple updates of this sum!
// we therefore keep track how often a cell was updated,
// to compute average gradient strengths
cellUpdateCounter[celly][cellx]++;
} // for (all cells)
} // for (all block x pos)
} // for (all block y pos)
// compute average gradient strengths
for (celly=0; celly<cells_in_y_dir; celly++)
{
for (cellx=0; cellx<cells_in_x_dir; cellx++)
{
float NrUpdatesForThisCell = (float)cellUpdateCounter[celly][cellx];
// compute average gradient strenghts for each gradient bin direction
for (int bin=0; bin<gradientBinSize; bin++)
{
gradientStrengths[celly][cellx][bin] /= NrUpdatesForThisCell;
}
}
}
// draw cells
for (celly=0; celly<cells_in_y_dir; celly++)
{
for (cellx=0; cellx<cells_in_x_dir; cellx++)
{
int drawX = cellx * cellSize;
int drawY = celly * cellSize;
int mx = drawX + cellSize/2;
int my = drawY + cellSize/2;
rectangle(visu, Point(drawX*zoomFac,drawY*zoomFac), Point((drawX+cellSize)*zoomFac,(drawY+cellSize)*zoomFac), CV_RGB(100,100,100), 1);
// draw in each cell all 9 gradient strengths
for (int bin=0; bin<gradientBinSize; bin++)
{
float currentGradStrength = gradientStrengths[celly][cellx][bin];
// no line to draw?
if (currentGradStrength==0)
continue;
float currRad = bin * radRangeForOneBin + radRangeForOneBin/2;
float dirVecX = cos( currRad );
float dirVecY = sin( currRad );
float maxVecLen = cellSize/2;
float scale = 2.5; // just a visualization scale, to see the lines better
// compute line coordinates
float x1 = mx - dirVecX * currentGradStrength * maxVecLen * scale;
float y1 = my - dirVecY * currentGradStrength * maxVecLen * scale;
float x2 = mx + dirVecX * currentGradStrength * maxVecLen * scale;
float y2 = my + dirVecY * currentGradStrength * maxVecLen * scale;
// draw gradient visualization
line(visu, Point(x1*zoomFac,y1*zoomFac), Point(x2*zoomFac,y2*zoomFac), CV_RGB(0,255,0), 1);
} // for (all bins)
} // for (cellx)
} // for (celly)
// don't forget to free memory allocated by helper data structures!
for (int y=0; y<cells_in_y_dir; y++)
{
for (int x=0; x<cells_in_x_dir; x++)
{
delete[] gradientStrengths[y][x];
}
delete[] gradientStrengths[y];
delete[] cellUpdateCounter[y];
}
delete[] gradientStrengths;
delete[] cellUpdateCounter;
return visu;
} // get_hogdescriptor_visu
void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, const Size & size )
{
HOGDescriptor hog;
hog.winSize = size;
Mat gray;
vector< Point > location;
vector< float > descriptors;
vector< Mat >::const_iterator img = img_lst.begin();
vector< Mat >::const_iterator end = img_lst.end();
for( ; img != end ; ++img )
{
cvtColor( *img, gray, COLOR_BGR2GRAY );
hog.compute( gray, descriptors, Size( 8, 8 ), Size( 0, 0 ), location );
gradient_lst.push_back( Mat( descriptors ).clone() );
#ifdef _DEBUG
imshow( "gradient", get_hogdescriptor_visu( img->clone(), descriptors, size ) );
waitKey( 10 );
#endif
}
}
void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels )
{
SVM svm;
/* Default values to train SVM */
SVMParams params;
params.coef0 = 0.0;
params.degree = 3;
params.term_crit.epsilon = 1e-3;
params.gamma = 0;
params.kernel_type = SVM::LINEAR;
params.nu = 0.5;
params.p = 0.1; // for EPSILON_SVR, epsilon in loss function?
params.C = 0.01; // From paper, soft classifier
params.svm_type = SVM::EPS_SVR; // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task
Mat train_data;
convert_to_ml( gradient_lst, train_data );
clog << "Start training...";
svm.train( train_data, Mat( labels ), Mat(), Mat(), params );
clog << "...[done]" << endl;
svm.save( "my_people_detector.yml" );
}
void draw_locations( Mat & img, const vector< Rect > & locations, const Scalar & color )
{
if( !locations.empty() )
{
vector< Rect >::const_iterator loc = locations.begin();
vector< Rect >::const_iterator end = locations.end();
for( ; loc != end ; ++loc )
{
rectangle( img, *loc, color, 2 );
}
}
}
void test_it( const Size & size )
{
char key = 27;
Scalar reference( 0, 255, 0 );
Scalar trained( 0, 0, 255 );
Mat img, draw;
SVM svm;
HOGDescriptor hog;
HOGDescriptor my_hog;
my_hog.winSize = size;
VideoCapture video;
vector< Rect > locations;
// Load the trained SVM.
svm.load( "my_people_detector.yml" );
// Set the trained svm to my_hog
vector< float > hog_detector;
get_svm_detector( svm, hog_detector );
my_hog.setSVMDetector( hog_detector );
// Set the people detector.
hog.setSVMDetector( hog.getDefaultPeopleDetector() );
// Open the camera.
video.open(0);
if( !video.isOpened() )
{
cerr << "Unable to open the device 0" << endl;
exit( -1 );
}
while( true )
{
video >> img;
if( !img.data )
break;
draw = img.clone();
locations.clear();
hog.detectMultiScale( img, locations );
draw_locations( draw, locations, reference );
locations.clear();
my_hog.detectMultiScale( img, locations );
draw_locations( draw, locations, trained );
imshow( "Video", draw );
key = waitKey( 10 );
if( 27 == key )
break;
}
}
int main( int argc, char** argv )
{
if( argc != 4 )
{
cout << "Wrong number of parameters." << endl
<< "Usage: " << argv[0] << " pos_dir pos.lst neg_dir neg.lst" << endl
<< "example: " << argv[0] << " /INRIA_dataset/ Train/pos.lst /INRIA_dataset/ Train/neg.lst" << endl;
exit( -1 );
}
vector< Mat > pos_lst;
vector< Mat > full_neg_lst;
vector< Mat > neg_lst;
vector< Mat > gradient_lst;
vector< int > labels;
load_images( argv[1], argv[2], pos_lst );
labels.assign( pos_lst.size(), +1 );
const unsigned int old = labels.size();
load_images( argv[3], argv[4], full_neg_lst );
sample_neg( full_neg_lst, neg_lst, Size( 96,160 ) );
labels.insert( labels.end(), neg_lst.size(), -1 );
CV_Assert( old < labels.size() );
compute_hog( pos_lst, gradient_lst, Size( 96, 160 ) );
compute_hog( neg_lst, gradient_lst, Size( 96, 160 ) );
train_svm( gradient_lst, labels );
test_it( Size( 96, 160 ) ); // change with your parameters
return 0;
}