Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

348 lines
11 KiB

/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_precomp.hpp"
namespace opencv_test { namespace {
class CV_DisTransTest : public cvtest::ArrayTest
{
public:
CV_DisTransTest();
protected:
void get_test_array_types_and_sizes( int test_case_idx, vector<vector<Size> >& sizes, vector<vector<int> >& types );
double get_success_error_level( int test_case_idx, int i, int j );
void run_func();
void prepare_to_validation( int );
void get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high );
int prepare_test_case( int test_case_idx );
int mask_size;
int dist_type;
int fill_labels;
float mask[3];
};
CV_DisTransTest::CV_DisTransTest()
{
test_array[INPUT].push_back(NULL);
test_array[OUTPUT].push_back(NULL);
test_array[OUTPUT].push_back(NULL);
test_array[REF_OUTPUT].push_back(NULL);
test_array[REF_OUTPUT].push_back(NULL);
optional_mask = false;
element_wise_relative_error = true;
}
void CV_DisTransTest::get_test_array_types_and_sizes( int test_case_idx,
vector<vector<Size> >& sizes, vector<vector<int> >& types )
{
RNG& rng = ts->get_rng();
cvtest::ArrayTest::get_test_array_types_and_sizes( test_case_idx, sizes, types );
types[INPUT][0] = CV_8UC1;
types[OUTPUT][0] = types[REF_OUTPUT][0] = CV_32FC1;
types[OUTPUT][1] = types[REF_OUTPUT][1] = CV_32SC1;
if( cvtest::randInt(rng) & 1 )
{
mask_size = 3;
}
else
{
mask_size = 5;
}
dist_type = cvtest::randInt(rng) % 3;
dist_type = dist_type == 0 ? CV_DIST_C : dist_type == 1 ? CV_DIST_L1 : CV_DIST_L2;
// for now, check only the "labeled" distance transform mode
fill_labels = 0;
if( !fill_labels )
sizes[OUTPUT][1] = sizes[REF_OUTPUT][1] = cvSize(0,0);
}
double CV_DisTransTest::get_success_error_level( int /*test_case_idx*/, int /*i*/, int /*j*/ )
{
Size sz = test_mat[INPUT][0].size();
return dist_type == CV_DIST_C || dist_type == CV_DIST_L1 ? 0 : 0.01*MAX(sz.width, sz.height);
}
void CV_DisTransTest::get_minmax_bounds( int i, int j, int type, Scalar& low, Scalar& high )
{
cvtest::ArrayTest::get_minmax_bounds( i, j, type, low, high );
if( i == INPUT && CV_MAT_DEPTH(type) == CV_8U )
{
low = Scalar::all(0);
high = Scalar::all(10);
}
}
int CV_DisTransTest::prepare_test_case( int test_case_idx )
{
int code = cvtest::ArrayTest::prepare_test_case( test_case_idx );
if( code > 0 )
{
// the function's response to an "all-nonzeros" image is not determined,
// so put at least one zero point
Mat& mat = test_mat[INPUT][0];
RNG& rng = ts->get_rng();
int i = cvtest::randInt(rng) % mat.rows;
int j = cvtest::randInt(rng) % mat.cols;
mat.at<uchar>(i,j) = 0;
}
return code;
}
void CV_DisTransTest::run_func()
{
cvDistTransform( test_array[INPUT][0], test_array[OUTPUT][0], dist_type, mask_size,
dist_type == CV_DIST_USER ? mask : 0, test_array[OUTPUT][1] );
}
static void
cvTsDistTransform( const CvMat* _src, CvMat* _dst, int dist_type,
int mask_size, float* _mask, CvMat* /*_labels*/ )
{
int i, j, k;
int width = _src->cols, height = _src->rows;
const float init_val = 1e6;
float mask[3];
CvMat* temp;
int ofs[16] = {0};
float delta[16];
int tstep, count;
CV_Assert( mask_size == 3 || mask_size == 5 );
if( dist_type == CV_DIST_USER )
memcpy( mask, _mask, sizeof(mask) );
else if( dist_type == CV_DIST_C )
{
mask_size = 3;
mask[0] = mask[1] = 1.f;
}
else if( dist_type == CV_DIST_L1 )
{
mask_size = 3;
mask[0] = 1.f;
mask[1] = 2.f;
}
else if( mask_size == 3 )
{
mask[0] = 0.955f;
mask[1] = 1.3693f;
}
else
{
mask[0] = 1.0f;
mask[1] = 1.4f;
mask[2] = 2.1969f;
}
temp = cvCreateMat( height + mask_size-1, width + mask_size-1, CV_32F );
tstep = temp->step / sizeof(float);
if( mask_size == 3 )
{
count = 4;
ofs[0] = -1; delta[0] = mask[0];
ofs[1] = -tstep-1; delta[1] = mask[1];
ofs[2] = -tstep; delta[2] = mask[0];
ofs[3] = -tstep+1; delta[3] = mask[1];
}
else
{
count = 8;
ofs[0] = -1; delta[0] = mask[0];
ofs[1] = -tstep-2; delta[1] = mask[2];
ofs[2] = -tstep-1; delta[2] = mask[1];
ofs[3] = -tstep; delta[3] = mask[0];
ofs[4] = -tstep+1; delta[4] = mask[1];
ofs[5] = -tstep+2; delta[5] = mask[2];
ofs[6] = -tstep*2-1; delta[6] = mask[2];
ofs[7] = -tstep*2+1; delta[7] = mask[2];
}
for( i = 0; i < mask_size/2; i++ )
{
float* t0 = (float*)(temp->data.ptr + i*temp->step);
float* t1 = (float*)(temp->data.ptr + (temp->rows - i - 1)*temp->step);
for( j = 0; j < width + mask_size - 1; j++ )
t0[j] = t1[j] = init_val;
}
for( i = 0; i < height; i++ )
{
uchar* s = _src->data.ptr + i*_src->step;
float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2);
for( j = 0; j < mask_size/2; j++ )
tmp[-j-1] = tmp[j + width] = init_val;
for( j = 0; j < width; j++ )
{
if( s[j] == 0 )
tmp[j] = 0;
else
{
float min_dist = init_val;
for( k = 0; k < count; k++ )
{
float t = tmp[j+ofs[k]] + delta[k];
if( min_dist > t )
min_dist = t;
}
tmp[j] = min_dist;
}
}
}
for( i = height - 1; i >= 0; i-- )
{
float* d = (float*)(_dst->data.ptr + i*_dst->step);
float* tmp = (float*)(temp->data.ptr + temp->step*(i + (mask_size/2))) + (mask_size/2);
for( j = width - 1; j >= 0; j-- )
{
float min_dist = tmp[j];
if( min_dist > mask[0] )
{
for( k = 0; k < count; k++ )
{
float t = tmp[j-ofs[k]] + delta[k];
if( min_dist > t )
min_dist = t;
}
tmp[j] = min_dist;
}
d[j] = min_dist;
}
}
cvReleaseMat( &temp );
}
void CV_DisTransTest::prepare_to_validation( int /*test_case_idx*/ )
{
CvMat _input = cvMat(test_mat[INPUT][0]), _output = cvMat(test_mat[REF_OUTPUT][0]);
cvTsDistTransform( &_input, &_output, dist_type, mask_size, mask, 0 );
}
TEST(Imgproc_DistanceTransform, accuracy) { CV_DisTransTest test; test.safe_run(); }
BIGDATA_TEST(Imgproc_DistanceTransform, large_image_12218)
{
const int lls_maxcnt = 79992000; // labels's maximum count
const int lls_mincnt = 1; // labels's minimum count
int i, j, nz;
Mat src(8000, 20000, CV_8UC1), dst, labels;
for( i = 0; i < src.rows; i++ )
for( j = 0; j < src.cols; j++ )
src.at<uchar>(i, j) = (j > (src.cols / 2)) ? 0 : 255;
distanceTransform(src, dst, labels, cv::DIST_L2, cv::DIST_MASK_3, DIST_LABEL_PIXEL);
double scale = (double)lls_mincnt / (double)lls_maxcnt;
labels.convertTo(labels, CV_32SC1, scale);
Size size = labels.size();
nz = cv::countNonZero(labels);
EXPECT_EQ(nz, (size.height*size.width / 2));
}
TEST(Imgproc_DistanceTransform, wide_image_22732)
{
Mat src = Mat::zeros(1, 4099, CV_8U); // 4099 or larger used to be bad
Mat dist(src.rows, src.cols, CV_32F);
distanceTransform(src, dist, DIST_L2, DIST_MASK_PRECISE, CV_32F);
int nz = countNonZero(dist);
EXPECT_EQ(nz, 0);
}
TEST(Imgproc_DistanceTransform, large_square_22732)
{
Mat src = Mat::zeros(8000, 8005, CV_8U), dist;
distanceTransform(src, dist, DIST_L2, DIST_MASK_PRECISE, CV_32F);
int nz = countNonZero(dist);
EXPECT_EQ(dist.size(), src.size());
EXPECT_EQ(dist.type(), CV_32F);
EXPECT_EQ(nz, 0);
Point p0(src.cols-1, src.rows-1);
src.setTo(1);
src.at<uchar>(p0) = 0;
distanceTransform(src, dist, DIST_L2, DIST_MASK_PRECISE, CV_32F);
EXPECT_EQ(dist.size(), src.size());
EXPECT_EQ(dist.type(), CV_32F);
bool first = true;
int nerrs = 0;
for (int y = 0; y < dist.rows; y++)
for (int x = 0; x < dist.cols; x++) {
float d = dist.at<float>(y, x);
double dx = (double)(x - p0.x), dy = (double)(y - p0.y);
float d0 = (float)sqrt(dx*dx + dy*dy);
if (std::abs(d0 - d) > 1) {
if (first) {
printf("y=%d, x=%d. dist_ref=%.2f, dist=%.2f\n", y, x, d0, d);
first = false;
}
nerrs++;
}
}
EXPECT_EQ(0, nerrs) << "reference distance map is different from computed one at " << nerrs << " pixels\n";
}
}} // namespace