mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
103 lines
2.7 KiB
103 lines
2.7 KiB
14 years ago
|
#include "opencv2/imgproc/imgproc.hpp"
|
||
|
#include "opencv2/objdetect/objdetect.hpp"
|
||
|
#include "opencv2/highgui/highgui.hpp"
|
||
|
|
||
15 years ago
|
#include <stdio.h>
|
||
|
#include <string.h>
|
||
|
#include <ctype.h>
|
||
|
|
||
|
using namespace cv;
|
||
|
using namespace std;
|
||
|
|
||
|
int main(int argc, char** argv)
|
||
|
{
|
||
|
Mat img;
|
||
|
FILE* f = 0;
|
||
|
char _filename[1024];
|
||
|
|
||
|
if( argc == 1 )
|
||
|
{
|
||
|
printf("Usage: peopledetect (<image_filename> | <image_list>.txt)\n");
|
||
|
return 0;
|
||
|
}
|
||
|
img = imread(argv[1]);
|
||
|
|
||
|
if( img.data )
|
||
|
{
|
||
|
strcpy(_filename, argv[1]);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
f = fopen(argv[1], "rt");
|
||
|
if(!f)
|
||
|
{
|
||
|
fprintf( stderr, "ERROR: the specified file could not be loaded\n");
|
||
|
return -1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
HOGDescriptor hog;
|
||
|
hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());
|
||
|
namedWindow("people detector", 1);
|
||
|
|
||
|
for(;;)
|
||
|
{
|
||
|
char* filename = _filename;
|
||
|
if(f)
|
||
|
{
|
||
|
if(!fgets(filename, (int)sizeof(_filename)-2, f))
|
||
|
break;
|
||
|
//while(*filename && isspace(*filename))
|
||
|
// ++filename;
|
||
|
if(filename[0] == '#')
|
||
|
continue;
|
||
|
int l = strlen(filename);
|
||
|
while(l > 0 && isspace(filename[l-1]))
|
||
|
--l;
|
||
|
filename[l] = '\0';
|
||
|
img = imread(filename);
|
||
|
}
|
||
|
printf("%s:\n", filename);
|
||
|
if(!img.data)
|
||
|
continue;
|
||
|
|
||
|
fflush(stdout);
|
||
|
vector<Rect> found, found_filtered;
|
||
|
double t = (double)getTickCount();
|
||
|
// run the detector with default parameters. to get a higher hit-rate
|
||
|
// (and more false alarms, respectively), decrease the hitThreshold and
|
||
|
// groupThreshold (set groupThreshold to 0 to turn off the grouping completely).
|
||
|
hog.detectMultiScale(img, found, 0, Size(8,8), Size(32,32), 1.05, 2);
|
||
|
t = (double)getTickCount() - t;
|
||
|
printf("tdetection time = %gms\n", t*1000./cv::getTickFrequency());
|
||
|
size_t i, j;
|
||
|
for( i = 0; i < found.size(); i++ )
|
||
|
{
|
||
|
Rect r = found[i];
|
||
|
for( j = 0; j < found.size(); j++ )
|
||
|
if( j != i && (r & found[j]) == r)
|
||
|
break;
|
||
|
if( j == found.size() )
|
||
|
found_filtered.push_back(r);
|
||
|
}
|
||
|
for( i = 0; i < found_filtered.size(); i++ )
|
||
|
{
|
||
|
Rect r = found_filtered[i];
|
||
|
// the HOG detector returns slightly larger rectangles than the real objects.
|
||
|
// so we slightly shrink the rectangles to get a nicer output.
|
||
|
r.x += cvRound(r.width*0.1);
|
||
|
r.width = cvRound(r.width*0.8);
|
||
|
r.y += cvRound(r.height*0.07);
|
||
|
r.height = cvRound(r.height*0.8);
|
||
|
rectangle(img, r.tl(), r.br(), cv::Scalar(0,255,0), 3);
|
||
|
}
|
||
|
imshow("people detector", img);
|
||
|
int c = waitKey(0) & 255;
|
||
|
if( c == 'q' || c == 'Q' || !f)
|
||
|
break;
|
||
|
}
|
||
|
if(f)
|
||
|
fclose(f);
|
||
|
return 0;
|
||
|
}
|