/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
# ifndef __OPENCV_GPU_HPP__
# define __OPENCV_GPU_HPP__
# ifndef SKIP_INCLUDES
# include <vector>
# include <memory>
# include <iosfwd>
# endif
# include "opencv2/core/gpumat.hpp"
# include "opencv2/imgproc.hpp"
# include "opencv2/objdetect.hpp"
# include "opencv2/features2d.hpp"
namespace cv { namespace gpu {
//////////////////////////////// Filter Engine ////////////////////////////////
/*!
The Base Class for 1 D or Row - wise Filters
This is the base class for linear or non - linear filters that process 1 D data .
In particular , such filters are used for the " horizontal " filtering parts in separable filters .
*/
class CV_EXPORTS BaseRowFilter_GPU
{
public :
BaseRowFilter_GPU ( int ksize_ , int anchor_ ) : ksize ( ksize_ ) , anchor ( anchor_ ) { }
virtual ~ BaseRowFilter_GPU ( ) { }
virtual void operator ( ) ( const GpuMat & src , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) = 0 ;
int ksize , anchor ;
} ;
/*!
The Base Class for Column - wise Filters
This is the base class for linear or non - linear filters that process columns of 2 D arrays .
Such filters are used for the " vertical " filtering parts in separable filters .
*/
class CV_EXPORTS BaseColumnFilter_GPU
{
public :
BaseColumnFilter_GPU ( int ksize_ , int anchor_ ) : ksize ( ksize_ ) , anchor ( anchor_ ) { }
virtual ~ BaseColumnFilter_GPU ( ) { }
virtual void operator ( ) ( const GpuMat & src , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) = 0 ;
int ksize , anchor ;
} ;
/*!
The Base Class for Non - Separable 2 D Filters .
This is the base class for linear or non - linear 2 D filters .
*/
class CV_EXPORTS BaseFilter_GPU
{
public :
BaseFilter_GPU ( const Size & ksize_ , const Point & anchor_ ) : ksize ( ksize_ ) , anchor ( anchor_ ) { }
virtual ~ BaseFilter_GPU ( ) { }
virtual void operator ( ) ( const GpuMat & src , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) = 0 ;
Size ksize ;
Point anchor ;
} ;
/*!
The Base Class for Filter Engine .
The class can be used to apply an arbitrary filtering operation to an image .
It contains all the necessary intermediate buffers .
*/
class CV_EXPORTS FilterEngine_GPU
{
public :
virtual ~ FilterEngine_GPU ( ) { }
virtual void apply ( const GpuMat & src , GpuMat & dst , Rect roi = Rect ( 0 , 0 , - 1 , - 1 ) , Stream & stream = Stream : : Null ( ) ) = 0 ;
} ;
//! returns the non-separable filter engine with the specified filter
CV_EXPORTS Ptr < FilterEngine_GPU > createFilter2D_GPU ( const Ptr < BaseFilter_GPU > & filter2D , int srcType , int dstType ) ;
//! returns the separable filter engine with the specified filters
CV_EXPORTS Ptr < FilterEngine_GPU > createSeparableFilter_GPU ( const Ptr < BaseRowFilter_GPU > & rowFilter ,
const Ptr < BaseColumnFilter_GPU > & columnFilter , int srcType , int bufType , int dstType ) ;
CV_EXPORTS Ptr < FilterEngine_GPU > createSeparableFilter_GPU ( const Ptr < BaseRowFilter_GPU > & rowFilter ,
const Ptr < BaseColumnFilter_GPU > & columnFilter , int srcType , int bufType , int dstType , GpuMat & buf ) ;
//! returns horizontal 1D box filter
//! supports only CV_8UC1 source type and CV_32FC1 sum type
CV_EXPORTS Ptr < BaseRowFilter_GPU > getRowSumFilter_GPU ( int srcType , int sumType , int ksize , int anchor = - 1 ) ;
//! returns vertical 1D box filter
//! supports only CV_8UC1 sum type and CV_32FC1 dst type
CV_EXPORTS Ptr < BaseColumnFilter_GPU > getColumnSumFilter_GPU ( int sumType , int dstType , int ksize , int anchor = - 1 ) ;
//! returns 2D box filter
//! supports CV_8UC1 and CV_8UC4 source type, dst type must be the same as source type
CV_EXPORTS Ptr < BaseFilter_GPU > getBoxFilter_GPU ( int srcType , int dstType , const Size & ksize , Point anchor = Point ( - 1 , - 1 ) ) ;
//! returns box filter engine
CV_EXPORTS Ptr < FilterEngine_GPU > createBoxFilter_GPU ( int srcType , int dstType , const Size & ksize ,
const Point & anchor = Point ( - 1 , - 1 ) ) ;
//! returns 2D morphological filter
//! only MORPH_ERODE and MORPH_DILATE are supported
//! supports CV_8UC1 and CV_8UC4 types
//! kernel must have CV_8UC1 type, one rows and cols == ksize.width * ksize.height
CV_EXPORTS Ptr < BaseFilter_GPU > getMorphologyFilter_GPU ( int op , int type , const Mat & kernel , const Size & ksize ,
Point anchor = Point ( - 1 , - 1 ) ) ;
//! returns morphological filter engine. Only MORPH_ERODE and MORPH_DILATE are supported.
CV_EXPORTS Ptr < FilterEngine_GPU > createMorphologyFilter_GPU ( int op , int type , const Mat & kernel ,
const Point & anchor = Point ( - 1 , - 1 ) , int iterations = 1 ) ;
CV_EXPORTS Ptr < FilterEngine_GPU > createMorphologyFilter_GPU ( int op , int type , const Mat & kernel , GpuMat & buf ,
const Point & anchor = Point ( - 1 , - 1 ) , int iterations = 1 ) ;
//! returns 2D filter with the specified kernel
//! supports CV_8U, CV_16U and CV_32F one and four channel image
CV_EXPORTS Ptr < BaseFilter_GPU > getLinearFilter_GPU ( int srcType , int dstType , const Mat & kernel , Point anchor = Point ( - 1 , - 1 ) , int borderType = BORDER_DEFAULT ) ;
//! returns the non-separable linear filter engine
CV_EXPORTS Ptr < FilterEngine_GPU > createLinearFilter_GPU ( int srcType , int dstType , const Mat & kernel ,
Point anchor = Point ( - 1 , - 1 ) , int borderType = BORDER_DEFAULT ) ;
//! returns the primitive row filter with the specified kernel.
//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 source type.
//! there are two version of algorithm: NPP and OpenCV.
//! NPP calls when srcType == CV_8UC1 or srcType == CV_8UC4 and bufType == srcType,
//! otherwise calls OpenCV version.
//! NPP supports only BORDER_CONSTANT border type.
//! OpenCV version supports only CV_32F as buffer depth and
//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types.
CV_EXPORTS Ptr < BaseRowFilter_GPU > getLinearRowFilter_GPU ( int srcType , int bufType , const Mat & rowKernel ,
int anchor = - 1 , int borderType = BORDER_DEFAULT ) ;
//! returns the primitive column filter with the specified kernel.
//! supports only CV_8UC1, CV_8UC4, CV_16SC1, CV_16SC2, CV_32SC1, CV_32FC1 dst type.
//! there are two version of algorithm: NPP and OpenCV.
//! NPP calls when dstType == CV_8UC1 or dstType == CV_8UC4 and bufType == dstType,
//! otherwise calls OpenCV version.
//! NPP supports only BORDER_CONSTANT border type.
//! OpenCV version supports only CV_32F as buffer depth and
//! BORDER_REFLECT101, BORDER_REPLICATE and BORDER_CONSTANT border types.
CV_EXPORTS Ptr < BaseColumnFilter_GPU > getLinearColumnFilter_GPU ( int bufType , int dstType , const Mat & columnKernel ,
int anchor = - 1 , int borderType = BORDER_DEFAULT ) ;
//! returns the separable linear filter engine
CV_EXPORTS Ptr < FilterEngine_GPU > createSeparableLinearFilter_GPU ( int srcType , int dstType , const Mat & rowKernel ,
const Mat & columnKernel , const Point & anchor = Point ( - 1 , - 1 ) , int rowBorderType = BORDER_DEFAULT ,
int columnBorderType = - 1 ) ;
CV_EXPORTS Ptr < FilterEngine_GPU > createSeparableLinearFilter_GPU ( int srcType , int dstType , const Mat & rowKernel ,
const Mat & columnKernel , GpuMat & buf , const Point & anchor = Point ( - 1 , - 1 ) , int rowBorderType = BORDER_DEFAULT ,
int columnBorderType = - 1 ) ;
//! returns filter engine for the generalized Sobel operator
CV_EXPORTS Ptr < FilterEngine_GPU > createDerivFilter_GPU ( int srcType , int dstType , int dx , int dy , int ksize ,
int rowBorderType = BORDER_DEFAULT , int columnBorderType = - 1 ) ;
CV_EXPORTS Ptr < FilterEngine_GPU > createDerivFilter_GPU ( int srcType , int dstType , int dx , int dy , int ksize , GpuMat & buf ,
int rowBorderType = BORDER_DEFAULT , int columnBorderType = - 1 ) ;
//! returns the Gaussian filter engine
CV_EXPORTS Ptr < FilterEngine_GPU > createGaussianFilter_GPU ( int type , Size ksize , double sigma1 , double sigma2 = 0 ,
int rowBorderType = BORDER_DEFAULT , int columnBorderType = - 1 ) ;
CV_EXPORTS Ptr < FilterEngine_GPU > createGaussianFilter_GPU ( int type , Size ksize , GpuMat & buf , double sigma1 , double sigma2 = 0 ,
int rowBorderType = BORDER_DEFAULT , int columnBorderType = - 1 ) ;
//! returns maximum filter
CV_EXPORTS Ptr < BaseFilter_GPU > getMaxFilter_GPU ( int srcType , int dstType , const Size & ksize , Point anchor = Point ( - 1 , - 1 ) ) ;
//! returns minimum filter
CV_EXPORTS Ptr < BaseFilter_GPU > getMinFilter_GPU ( int srcType , int dstType , const Size & ksize , Point anchor = Point ( - 1 , - 1 ) ) ;
//! smooths the image using the normalized box filter
//! supports CV_8UC1, CV_8UC4 types
CV_EXPORTS void boxFilter ( const GpuMat & src , GpuMat & dst , int ddepth , Size ksize , Point anchor = Point ( - 1 , - 1 ) , Stream & stream = Stream : : Null ( ) ) ;
//! a synonym for normalized box filter
static inline void blur ( const GpuMat & src , GpuMat & dst , Size ksize , Point anchor = Point ( - 1 , - 1 ) , Stream & stream = Stream : : Null ( ) )
{
boxFilter ( src , dst , - 1 , ksize , anchor , stream ) ;
}
//! erodes the image (applies the local minimum operator)
CV_EXPORTS void erode ( const GpuMat & src , GpuMat & dst , const Mat & kernel , Point anchor = Point ( - 1 , - 1 ) , int iterations = 1 ) ;
CV_EXPORTS void erode ( const GpuMat & src , GpuMat & dst , const Mat & kernel , GpuMat & buf ,
Point anchor = Point ( - 1 , - 1 ) , int iterations = 1 ,
Stream & stream = Stream : : Null ( ) ) ;
//! dilates the image (applies the local maximum operator)
CV_EXPORTS void dilate ( const GpuMat & src , GpuMat & dst , const Mat & kernel , Point anchor = Point ( - 1 , - 1 ) , int iterations = 1 ) ;
CV_EXPORTS void dilate ( const GpuMat & src , GpuMat & dst , const Mat & kernel , GpuMat & buf ,
Point anchor = Point ( - 1 , - 1 ) , int iterations = 1 ,
Stream & stream = Stream : : Null ( ) ) ;
//! applies an advanced morphological operation to the image
CV_EXPORTS void morphologyEx ( const GpuMat & src , GpuMat & dst , int op , const Mat & kernel , Point anchor = Point ( - 1 , - 1 ) , int iterations = 1 ) ;
CV_EXPORTS void morphologyEx ( const GpuMat & src , GpuMat & dst , int op , const Mat & kernel , GpuMat & buf1 , GpuMat & buf2 ,
Point anchor = Point ( - 1 , - 1 ) , int iterations = 1 , Stream & stream = Stream : : Null ( ) ) ;
//! applies non-separable 2D linear filter to the image
CV_EXPORTS void filter2D ( const GpuMat & src , GpuMat & dst , int ddepth , const Mat & kernel , Point anchor = Point ( - 1 , - 1 ) , int borderType = BORDER_DEFAULT , Stream & stream = Stream : : Null ( ) ) ;
//! applies separable 2D linear filter to the image
CV_EXPORTS void sepFilter2D ( const GpuMat & src , GpuMat & dst , int ddepth , const Mat & kernelX , const Mat & kernelY ,
Point anchor = Point ( - 1 , - 1 ) , int rowBorderType = BORDER_DEFAULT , int columnBorderType = - 1 ) ;
CV_EXPORTS void sepFilter2D ( const GpuMat & src , GpuMat & dst , int ddepth , const Mat & kernelX , const Mat & kernelY , GpuMat & buf ,
Point anchor = Point ( - 1 , - 1 ) , int rowBorderType = BORDER_DEFAULT , int columnBorderType = - 1 ,
Stream & stream = Stream : : Null ( ) ) ;
//! applies generalized Sobel operator to the image
CV_EXPORTS void Sobel ( const GpuMat & src , GpuMat & dst , int ddepth , int dx , int dy , int ksize = 3 , double scale = 1 ,
int rowBorderType = BORDER_DEFAULT , int columnBorderType = - 1 ) ;
CV_EXPORTS void Sobel ( const GpuMat & src , GpuMat & dst , int ddepth , int dx , int dy , GpuMat & buf , int ksize = 3 , double scale = 1 ,
int rowBorderType = BORDER_DEFAULT , int columnBorderType = - 1 , Stream & stream = Stream : : Null ( ) ) ;
//! applies the vertical or horizontal Scharr operator to the image
CV_EXPORTS void Scharr ( const GpuMat & src , GpuMat & dst , int ddepth , int dx , int dy , double scale = 1 ,
int rowBorderType = BORDER_DEFAULT , int columnBorderType = - 1 ) ;
CV_EXPORTS void Scharr ( const GpuMat & src , GpuMat & dst , int ddepth , int dx , int dy , GpuMat & buf , double scale = 1 ,
int rowBorderType = BORDER_DEFAULT , int columnBorderType = - 1 , Stream & stream = Stream : : Null ( ) ) ;
//! smooths the image using Gaussian filter.
CV_EXPORTS void GaussianBlur ( const GpuMat & src , GpuMat & dst , Size ksize , double sigma1 , double sigma2 = 0 ,
int rowBorderType = BORDER_DEFAULT , int columnBorderType = - 1 ) ;
CV_EXPORTS void GaussianBlur ( const GpuMat & src , GpuMat & dst , Size ksize , GpuMat & buf , double sigma1 , double sigma2 = 0 ,
int rowBorderType = BORDER_DEFAULT , int columnBorderType = - 1 , Stream & stream = Stream : : Null ( ) ) ;
//! applies Laplacian operator to the image
//! supports only ksize = 1 and ksize = 3
CV_EXPORTS void Laplacian ( const GpuMat & src , GpuMat & dst , int ddepth , int ksize = 1 , double scale = 1 , int borderType = BORDER_DEFAULT , Stream & stream = Stream : : Null ( ) ) ;
////////////////////////////// Arithmetics ///////////////////////////////////
//! implements generalized matrix product algorithm GEMM from BLAS
CV_EXPORTS void gemm ( const GpuMat & src1 , const GpuMat & src2 , double alpha ,
const GpuMat & src3 , double beta , GpuMat & dst , int flags = 0 , Stream & stream = Stream : : Null ( ) ) ;
//! transposes the matrix
//! supports matrix with element size = 1, 4 and 8 bytes (CV_8UC1, CV_8UC4, CV_16UC2, CV_32FC1, etc)
CV_EXPORTS void transpose ( const GpuMat & src1 , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! reverses the order of the rows, columns or both in a matrix
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U, CV_32S or CV_32F depth
CV_EXPORTS void flip ( const GpuMat & a , GpuMat & b , int flipCode , Stream & stream = Stream : : Null ( ) ) ;
//! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i))
//! destination array will have the depth type as lut and the same channels number as source
//! supports CV_8UC1, CV_8UC3 types
CV_EXPORTS void LUT ( const GpuMat & src , const Mat & lut , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! makes multi-channel array out of several single-channel arrays
CV_EXPORTS void merge ( const GpuMat * src , size_t n , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! makes multi-channel array out of several single-channel arrays
CV_EXPORTS void merge ( const std : : vector < GpuMat > & src , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! copies each plane of a multi-channel array to a dedicated array
CV_EXPORTS void split ( const GpuMat & src , GpuMat * dst , Stream & stream = Stream : : Null ( ) ) ;
//! copies each plane of a multi-channel array to a dedicated array
CV_EXPORTS void split ( const GpuMat & src , std : : vector < GpuMat > & dst , Stream & stream = Stream : : Null ( ) ) ;
//! computes magnitude of complex (x(i).re, x(i).im) vector
//! supports only CV_32FC2 type
CV_EXPORTS void magnitude ( const GpuMat & xy , GpuMat & magnitude , Stream & stream = Stream : : Null ( ) ) ;
//! computes squared magnitude of complex (x(i).re, x(i).im) vector
//! supports only CV_32FC2 type
CV_EXPORTS void magnitudeSqr ( const GpuMat & xy , GpuMat & magnitude , Stream & stream = Stream : : Null ( ) ) ;
//! computes magnitude of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void magnitude ( const GpuMat & x , const GpuMat & y , GpuMat & magnitude , Stream & stream = Stream : : Null ( ) ) ;
//! computes squared magnitude of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void magnitudeSqr ( const GpuMat & x , const GpuMat & y , GpuMat & magnitude , Stream & stream = Stream : : Null ( ) ) ;
//! computes angle (angle(i)) of each (x(i), y(i)) vector
//! supports only floating-point source
CV_EXPORTS void phase ( const GpuMat & x , const GpuMat & y , GpuMat & angle , bool angleInDegrees = false , Stream & stream = Stream : : Null ( ) ) ;
//! converts Cartesian coordinates to polar
//! supports only floating-point source
CV_EXPORTS void cartToPolar ( const GpuMat & x , const GpuMat & y , GpuMat & magnitude , GpuMat & angle , bool angleInDegrees = false , Stream & stream = Stream : : Null ( ) ) ;
//! converts polar coordinates to Cartesian
//! supports only floating-point source
CV_EXPORTS void polarToCart ( const GpuMat & magnitude , const GpuMat & angle , GpuMat & x , GpuMat & y , bool angleInDegrees = false , Stream & stream = Stream : : Null ( ) ) ;
//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values
CV_EXPORTS void normalize ( const GpuMat & src , GpuMat & dst , double alpha = 1 , double beta = 0 ,
int norm_type = NORM_L2 , int dtype = - 1 , const GpuMat & mask = GpuMat ( ) ) ;
CV_EXPORTS void normalize ( const GpuMat & src , GpuMat & dst , double a , double b ,
int norm_type , int dtype , const GpuMat & mask , GpuMat & norm_buf , GpuMat & cvt_buf ) ;
//////////////////////////// Per-element operations ////////////////////////////////////
//! adds one matrix to another (c = a + b)
CV_EXPORTS void add ( const GpuMat & a , const GpuMat & b , GpuMat & c , const GpuMat & mask = GpuMat ( ) , int dtype = - 1 , Stream & stream = Stream : : Null ( ) ) ;
//! adds scalar to a matrix (c = a + s)
CV_EXPORTS void add ( const GpuMat & a , const Scalar & sc , GpuMat & c , const GpuMat & mask = GpuMat ( ) , int dtype = - 1 , Stream & stream = Stream : : Null ( ) ) ;
//! subtracts one matrix from another (c = a - b)
CV_EXPORTS void subtract ( const GpuMat & a , const GpuMat & b , GpuMat & c , const GpuMat & mask = GpuMat ( ) , int dtype = - 1 , Stream & stream = Stream : : Null ( ) ) ;
//! subtracts scalar from a matrix (c = a - s)
CV_EXPORTS void subtract ( const GpuMat & a , const Scalar & sc , GpuMat & c , const GpuMat & mask = GpuMat ( ) , int dtype = - 1 , Stream & stream = Stream : : Null ( ) ) ;
//! computes element-wise weighted product of the two arrays (c = scale * a * b)
CV_EXPORTS void multiply ( const GpuMat & a , const GpuMat & b , GpuMat & c , double scale = 1 , int dtype = - 1 , Stream & stream = Stream : : Null ( ) ) ;
//! weighted multiplies matrix to a scalar (c = scale * a * s)
CV_EXPORTS void multiply ( const GpuMat & a , const Scalar & sc , GpuMat & c , double scale = 1 , int dtype = - 1 , Stream & stream = Stream : : Null ( ) ) ;
//! computes element-wise weighted quotient of the two arrays (c = a / b)
CV_EXPORTS void divide ( const GpuMat & a , const GpuMat & b , GpuMat & c , double scale = 1 , int dtype = - 1 , Stream & stream = Stream : : Null ( ) ) ;
//! computes element-wise weighted quotient of matrix and scalar (c = a / s)
CV_EXPORTS void divide ( const GpuMat & a , const Scalar & sc , GpuMat & c , double scale = 1 , int dtype = - 1 , Stream & stream = Stream : : Null ( ) ) ;
//! computes element-wise weighted reciprocal of an array (dst = scale/src2)
CV_EXPORTS void divide ( double scale , const GpuMat & b , GpuMat & c , int dtype = - 1 , Stream & stream = Stream : : Null ( ) ) ;
//! computes the weighted sum of two arrays (dst = alpha*src1 + beta*src2 + gamma)
CV_EXPORTS void addWeighted ( const GpuMat & src1 , double alpha , const GpuMat & src2 , double beta , double gamma , GpuMat & dst ,
int dtype = - 1 , Stream & stream = Stream : : Null ( ) ) ;
//! adds scaled array to another one (dst = alpha*src1 + src2)
static inline void scaleAdd ( const GpuMat & src1 , double alpha , const GpuMat & src2 , GpuMat & dst , Stream & stream = Stream : : Null ( ) )
{
addWeighted ( src1 , alpha , src2 , 1.0 , 0.0 , dst , - 1 , stream ) ;
}
//! computes element-wise absolute difference of two arrays (c = abs(a - b))
CV_EXPORTS void absdiff ( const GpuMat & a , const GpuMat & b , GpuMat & c , Stream & stream = Stream : : Null ( ) ) ;
//! computes element-wise absolute difference of array and scalar (c = abs(a - s))
CV_EXPORTS void absdiff ( const GpuMat & a , const Scalar & s , GpuMat & c , Stream & stream = Stream : : Null ( ) ) ;
//! computes absolute value of each matrix element
//! supports CV_16S and CV_32F depth
CV_EXPORTS void abs ( const GpuMat & src , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! computes square of each pixel in an image
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
CV_EXPORTS void sqr ( const GpuMat & src , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! computes square root of each pixel in an image
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
CV_EXPORTS void sqrt ( const GpuMat & src , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! computes exponent of each matrix element (b = e**a)
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
CV_EXPORTS void exp ( const GpuMat & a , GpuMat & b , Stream & stream = Stream : : Null ( ) ) ;
//! computes natural logarithm of absolute value of each matrix element: b = log(abs(a))
//! supports CV_8U, CV_16U, CV_16S and CV_32F depth
CV_EXPORTS void log ( const GpuMat & a , GpuMat & b , Stream & stream = Stream : : Null ( ) ) ;
//! computes power of each matrix element:
// (dst(i,j) = pow( src(i,j) , power), if src.type() is integer
// (dst(i,j) = pow(fabs(src(i,j)), power), otherwise
//! supports all, except depth == CV_64F
CV_EXPORTS void pow ( const GpuMat & src , double power , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! compares elements of two arrays (c = a <cmpop> b)
CV_EXPORTS void compare ( const GpuMat & a , const GpuMat & b , GpuMat & c , int cmpop , Stream & stream = Stream : : Null ( ) ) ;
CV_EXPORTS void compare ( const GpuMat & a , Scalar sc , GpuMat & c , int cmpop , Stream & stream = Stream : : Null ( ) ) ;
//! performs per-elements bit-wise inversion
CV_EXPORTS void bitwise_not ( const GpuMat & src , GpuMat & dst , const GpuMat & mask = GpuMat ( ) , Stream & stream = Stream : : Null ( ) ) ;
//! calculates per-element bit-wise disjunction of two arrays
CV_EXPORTS void bitwise_or ( const GpuMat & src1 , const GpuMat & src2 , GpuMat & dst , const GpuMat & mask = GpuMat ( ) , Stream & stream = Stream : : Null ( ) ) ;
//! calculates per-element bit-wise disjunction of array and scalar
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
CV_EXPORTS void bitwise_or ( const GpuMat & src1 , const Scalar & sc , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! calculates per-element bit-wise conjunction of two arrays
CV_EXPORTS void bitwise_and ( const GpuMat & src1 , const GpuMat & src2 , GpuMat & dst , const GpuMat & mask = GpuMat ( ) , Stream & stream = Stream : : Null ( ) ) ;
//! calculates per-element bit-wise conjunction of array and scalar
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
CV_EXPORTS void bitwise_and ( const GpuMat & src1 , const Scalar & sc , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! calculates per-element bit-wise "exclusive or" operation
CV_EXPORTS void bitwise_xor ( const GpuMat & src1 , const GpuMat & src2 , GpuMat & dst , const GpuMat & mask = GpuMat ( ) , Stream & stream = Stream : : Null ( ) ) ;
//! calculates per-element bit-wise "exclusive or" of array and scalar
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
CV_EXPORTS void bitwise_xor ( const GpuMat & src1 , const Scalar & sc , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! pixel by pixel right shift of an image by a constant value
//! supports 1, 3 and 4 channels images with integers elements
CV_EXPORTS void rshift ( const GpuMat & src , Scalar_ < int > sc , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! pixel by pixel left shift of an image by a constant value
//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth
CV_EXPORTS void lshift ( const GpuMat & src , Scalar_ < int > sc , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! computes per-element minimum of two arrays (dst = min(src1, src2))
CV_EXPORTS void min ( const GpuMat & src1 , const GpuMat & src2 , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! computes per-element minimum of array and scalar (dst = min(src1, src2))
CV_EXPORTS void min ( const GpuMat & src1 , double src2 , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! computes per-element maximum of two arrays (dst = max(src1, src2))
CV_EXPORTS void max ( const GpuMat & src1 , const GpuMat & src2 , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! computes per-element maximum of array and scalar (dst = max(src1, src2))
CV_EXPORTS void max ( const GpuMat & src1 , double src2 , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
enum { ALPHA_OVER , ALPHA_IN , ALPHA_OUT , ALPHA_ATOP , ALPHA_XOR , ALPHA_PLUS , ALPHA_OVER_PREMUL , ALPHA_IN_PREMUL , ALPHA_OUT_PREMUL ,
ALPHA_ATOP_PREMUL , ALPHA_XOR_PREMUL , ALPHA_PLUS_PREMUL , ALPHA_PREMUL } ;
//! Composite two images using alpha opacity values contained in each image
//! Supports CV_8UC4, CV_16UC4, CV_32SC4 and CV_32FC4 types
CV_EXPORTS void alphaComp ( const GpuMat & img1 , const GpuMat & img2 , GpuMat & dst , int alpha_op , Stream & stream = Stream : : Null ( ) ) ;
////////////////////////////// Image processing //////////////////////////////
//! DST[x,y] = SRC[xmap[x,y],ymap[x,y]]
//! supports only CV_32FC1 map type
CV_EXPORTS void remap ( const GpuMat & src , GpuMat & dst , const GpuMat & xmap , const GpuMat & ymap ,
int interpolation , int borderMode = BORDER_CONSTANT , Scalar borderValue = Scalar ( ) ,
Stream & stream = Stream : : Null ( ) ) ;
//! Does mean shift filtering on GPU.
CV_EXPORTS void meanShiftFiltering ( const GpuMat & src , GpuMat & dst , int sp , int sr ,
TermCriteria criteria = TermCriteria ( TermCriteria : : MAX_ITER + TermCriteria : : EPS , 5 , 1 ) ,
Stream & stream = Stream : : Null ( ) ) ;
//! Does mean shift procedure on GPU.
CV_EXPORTS void meanShiftProc ( const GpuMat & src , GpuMat & dstr , GpuMat & dstsp , int sp , int sr ,
TermCriteria criteria = TermCriteria ( TermCriteria : : MAX_ITER + TermCriteria : : EPS , 5 , 1 ) ,
Stream & stream = Stream : : Null ( ) ) ;
//! Does mean shift segmentation with elimination of small regions.
CV_EXPORTS void meanShiftSegmentation ( const GpuMat & src , Mat & dst , int sp , int sr , int minsize ,
TermCriteria criteria = TermCriteria ( TermCriteria : : MAX_ITER + TermCriteria : : EPS , 5 , 1 ) ) ;
//! Does coloring of disparity image: [0..ndisp) -> [0..240, 1, 1] in HSV.
//! Supported types of input disparity: CV_8U, CV_16S.
//! Output disparity has CV_8UC4 type in BGRA format (alpha = 255).
CV_EXPORTS void drawColorDisp ( const GpuMat & src_disp , GpuMat & dst_disp , int ndisp , Stream & stream = Stream : : Null ( ) ) ;
//! Reprojects disparity image to 3D space.
//! Supports CV_8U and CV_16S types of input disparity.
//! The output is a 3- or 4-channel floating-point matrix.
//! Each element of this matrix will contain the 3D coordinates of the point (x,y,z,1), computed from the disparity map.
//! Q is the 4x4 perspective transformation matrix that can be obtained with cvStereoRectify.
CV_EXPORTS void reprojectImageTo3D ( const GpuMat & disp , GpuMat & xyzw , const Mat & Q , int dst_cn = 4 , Stream & stream = Stream : : Null ( ) ) ;
//! converts image from one color space to another
CV_EXPORTS void cvtColor ( const GpuMat & src , GpuMat & dst , int code , int dcn = 0 , Stream & stream = Stream : : Null ( ) ) ;
enum
{
// Bayer Demosaicing (Malvar, He, and Cutler)
COLOR_BayerBG2BGR_MHT = 256 ,
COLOR_BayerGB2BGR_MHT = 257 ,
COLOR_BayerRG2BGR_MHT = 258 ,
COLOR_BayerGR2BGR_MHT = 259 ,
COLOR_BayerBG2RGB_MHT = COLOR_BayerRG2BGR_MHT ,
COLOR_BayerGB2RGB_MHT = COLOR_BayerGR2BGR_MHT ,
COLOR_BayerRG2RGB_MHT = COLOR_BayerBG2BGR_MHT ,
COLOR_BayerGR2RGB_MHT = COLOR_BayerGB2BGR_MHT ,
COLOR_BayerBG2GRAY_MHT = 260 ,
COLOR_BayerGB2GRAY_MHT = 261 ,
COLOR_BayerRG2GRAY_MHT = 262 ,
COLOR_BayerGR2GRAY_MHT = 263
} ;
CV_EXPORTS void demosaicing ( const GpuMat & src , GpuMat & dst , int code , int dcn = - 1 , Stream & stream = Stream : : Null ( ) ) ;
//! swap channels
//! dstOrder - Integer array describing how channel values are permutated. The n-th entry
//! of the array contains the number of the channel that is stored in the n-th channel of
//! the output image. E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR
//! channel order.
CV_EXPORTS void swapChannels ( GpuMat & image , const int dstOrder [ 4 ] , Stream & stream = Stream : : Null ( ) ) ;
//! Routines for correcting image color gamma
CV_EXPORTS void gammaCorrection ( const GpuMat & src , GpuMat & dst , bool forward = true , Stream & stream = Stream : : Null ( ) ) ;
//! applies fixed threshold to the image
CV_EXPORTS double threshold ( const GpuMat & src , GpuMat & dst , double thresh , double maxval , int type , Stream & stream = Stream : : Null ( ) ) ;
//! resizes the image
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA
CV_EXPORTS void resize ( const GpuMat & src , GpuMat & dst , Size dsize , double fx = 0 , double fy = 0 , int interpolation = INTER_LINEAR , Stream & stream = Stream : : Null ( ) ) ;
//! warps the image using affine transformation
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
CV_EXPORTS void warpAffine ( const GpuMat & src , GpuMat & dst , const Mat & M , Size dsize , int flags = INTER_LINEAR ,
int borderMode = BORDER_CONSTANT , Scalar borderValue = Scalar ( ) , Stream & stream = Stream : : Null ( ) ) ;
CV_EXPORTS void buildWarpAffineMaps ( const Mat & M , bool inverse , Size dsize , GpuMat & xmap , GpuMat & ymap , Stream & stream = Stream : : Null ( ) ) ;
//! warps the image using perspective transformation
//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
CV_EXPORTS void warpPerspective ( const GpuMat & src , GpuMat & dst , const Mat & M , Size dsize , int flags = INTER_LINEAR ,
int borderMode = BORDER_CONSTANT , Scalar borderValue = Scalar ( ) , Stream & stream = Stream : : Null ( ) ) ;
CV_EXPORTS void buildWarpPerspectiveMaps ( const Mat & M , bool inverse , Size dsize , GpuMat & xmap , GpuMat & ymap , Stream & stream = Stream : : Null ( ) ) ;
//! builds plane warping maps
CV_EXPORTS void buildWarpPlaneMaps ( Size src_size , Rect dst_roi , const Mat & K , const Mat & R , const Mat & T , float scale ,
GpuMat & map_x , GpuMat & map_y , Stream & stream = Stream : : Null ( ) ) ;
//! builds cylindrical warping maps
CV_EXPORTS void buildWarpCylindricalMaps ( Size src_size , Rect dst_roi , const Mat & K , const Mat & R , float scale ,
GpuMat & map_x , GpuMat & map_y , Stream & stream = Stream : : Null ( ) ) ;
//! builds spherical warping maps
CV_EXPORTS void buildWarpSphericalMaps ( Size src_size , Rect dst_roi , const Mat & K , const Mat & R , float scale ,
GpuMat & map_x , GpuMat & map_y , Stream & stream = Stream : : Null ( ) ) ;
//! rotates an image around the origin (0,0) and then shifts it
//! supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC
//! supports 1, 3 or 4 channels images with CV_8U, CV_16U or CV_32F depth
CV_EXPORTS void rotate ( const GpuMat & src , GpuMat & dst , Size dsize , double angle , double xShift = 0 , double yShift = 0 ,
int interpolation = INTER_LINEAR , Stream & stream = Stream : : Null ( ) ) ;
//! copies 2D array to a larger destination array and pads borders with user-specifiable constant
CV_EXPORTS void copyMakeBorder ( const GpuMat & src , GpuMat & dst , int top , int bottom , int left , int right , int borderType ,
const Scalar & value = Scalar ( ) , Stream & stream = Stream : : Null ( ) ) ;
//! computes the integral image
//! sum will have CV_32S type, but will contain unsigned int values
//! supports only CV_8UC1 source type
CV_EXPORTS void integral ( const GpuMat & src , GpuMat & sum , Stream & stream = Stream : : Null ( ) ) ;
//! buffered version
CV_EXPORTS void integralBuffered ( const GpuMat & src , GpuMat & sum , GpuMat & buffer , Stream & stream = Stream : : Null ( ) ) ;
//! computes squared integral image
//! result matrix will have 64F type, but will contain 64U values
//! supports source images of 8UC1 type only
CV_EXPORTS void sqrIntegral ( const GpuMat & src , GpuMat & sqsum , Stream & stream = Stream : : Null ( ) ) ;
//! computes vertical sum, supports only CV_32FC1 images
CV_EXPORTS void columnSum ( const GpuMat & src , GpuMat & sum ) ;
//! computes the standard deviation of integral images
//! supports only CV_32SC1 source type and CV_32FC1 sqr type
//! output will have CV_32FC1 type
CV_EXPORTS void rectStdDev ( const GpuMat & src , const GpuMat & sqr , GpuMat & dst , const Rect & rect , Stream & stream = Stream : : Null ( ) ) ;
//! computes Harris cornerness criteria at each image pixel
CV_EXPORTS void cornerHarris ( const GpuMat & src , GpuMat & dst , int blockSize , int ksize , double k , int borderType = BORDER_REFLECT101 ) ;
CV_EXPORTS void cornerHarris ( const GpuMat & src , GpuMat & dst , GpuMat & Dx , GpuMat & Dy , int blockSize , int ksize , double k , int borderType = BORDER_REFLECT101 ) ;
CV_EXPORTS void cornerHarris ( const GpuMat & src , GpuMat & dst , GpuMat & Dx , GpuMat & Dy , GpuMat & buf , int blockSize , int ksize , double k ,
int borderType = BORDER_REFLECT101 , Stream & stream = Stream : : Null ( ) ) ;
//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria
CV_EXPORTS void cornerMinEigenVal ( const GpuMat & src , GpuMat & dst , int blockSize , int ksize , int borderType = BORDER_REFLECT101 ) ;
CV_EXPORTS void cornerMinEigenVal ( const GpuMat & src , GpuMat & dst , GpuMat & Dx , GpuMat & Dy , int blockSize , int ksize , int borderType = BORDER_REFLECT101 ) ;
CV_EXPORTS void cornerMinEigenVal ( const GpuMat & src , GpuMat & dst , GpuMat & Dx , GpuMat & Dy , GpuMat & buf , int blockSize , int ksize ,
int borderType = BORDER_REFLECT101 , Stream & stream = Stream : : Null ( ) ) ;
//! performs per-element multiplication of two full (not packed) Fourier spectrums
//! supports 32FC2 matrixes only (interleaved format)
CV_EXPORTS void mulSpectrums ( const GpuMat & a , const GpuMat & b , GpuMat & c , int flags , bool conjB = false , Stream & stream = Stream : : Null ( ) ) ;
//! performs per-element multiplication of two full (not packed) Fourier spectrums
//! supports 32FC2 matrixes only (interleaved format)
CV_EXPORTS void mulAndScaleSpectrums ( const GpuMat & a , const GpuMat & b , GpuMat & c , int flags , float scale , bool conjB = false , Stream & stream = Stream : : Null ( ) ) ;
//! Performs a forward or inverse discrete Fourier transform (1D or 2D) of floating point matrix.
//! Param dft_size is the size of DFT transform.
//!
//! If the source matrix is not continous, then additional copy will be done,
//! so to avoid copying ensure the source matrix is continous one. If you want to use
//! preallocated output ensure it is continuous too, otherwise it will be reallocated.
//!
//! Being implemented via CUFFT real-to-complex transform result contains only non-redundant values
//! in CUFFT's format. Result as full complex matrix for such kind of transform cannot be retrieved.
//!
//! For complex-to-real transform it is assumed that the source matrix is packed in CUFFT's format.
CV_EXPORTS void dft ( const GpuMat & src , GpuMat & dst , Size dft_size , int flags = 0 , Stream & stream = Stream : : Null ( ) ) ;
struct CV_EXPORTS ConvolveBuf
{
Size result_size ;
Size block_size ;
Size user_block_size ;
Size dft_size ;
int spect_len ;
GpuMat image_spect , templ_spect , result_spect ;
GpuMat image_block , templ_block , result_data ;
void create ( Size image_size , Size templ_size ) ;
static Size estimateBlockSize ( Size result_size , Size templ_size ) ;
} ;
//! computes convolution (or cross-correlation) of two images using discrete Fourier transform
//! supports source images of 32FC1 type only
//! result matrix will have 32FC1 type
CV_EXPORTS void convolve ( const GpuMat & image , const GpuMat & templ , GpuMat & result , bool ccorr = false ) ;
CV_EXPORTS void convolve ( const GpuMat & image , const GpuMat & templ , GpuMat & result , bool ccorr , ConvolveBuf & buf , Stream & stream = Stream : : Null ( ) ) ;
struct CV_EXPORTS MatchTemplateBuf
{
Size user_block_size ;
GpuMat imagef , templf ;
std : : vector < GpuMat > images ;
std : : vector < GpuMat > image_sums ;
std : : vector < GpuMat > image_sqsums ;
} ;
//! computes the proximity map for the raster template and the image where the template is searched for
CV_EXPORTS void matchTemplate ( const GpuMat & image , const GpuMat & templ , GpuMat & result , int method , Stream & stream = Stream : : Null ( ) ) ;
//! computes the proximity map for the raster template and the image where the template is searched for
CV_EXPORTS void matchTemplate ( const GpuMat & image , const GpuMat & templ , GpuMat & result , int method , MatchTemplateBuf & buf , Stream & stream = Stream : : Null ( ) ) ;
//! smoothes the source image and downsamples it
CV_EXPORTS void pyrDown ( const GpuMat & src , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! upsamples the source image and then smoothes it
CV_EXPORTS void pyrUp ( const GpuMat & src , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
//! performs linear blending of two images
//! to avoid accuracy errors sum of weigths shouldn't be very close to zero
CV_EXPORTS void blendLinear ( const GpuMat & img1 , const GpuMat & img2 , const GpuMat & weights1 , const GpuMat & weights2 ,
GpuMat & result , Stream & stream = Stream : : Null ( ) ) ;
//! Performa bilateral filtering of passsed image
CV_EXPORTS void bilateralFilter ( const GpuMat & src , GpuMat & dst , int kernel_size , float sigma_color , float sigma_spatial ,
int borderMode = BORDER_DEFAULT , Stream & stream = Stream : : Null ( ) ) ;
//! Brute force non-local means algorith (slow but universal)
CV_EXPORTS void nonLocalMeans ( const GpuMat & src , GpuMat & dst , float h , int search_window = 21 , int block_size = 7 , int borderMode = BORDER_DEFAULT , Stream & s = Stream : : Null ( ) ) ;
//! Fast (but approximate)version of non-local means algorith similar to CPU function (running sums technique)
class CV_EXPORTS FastNonLocalMeansDenoising
{
public :
//! Simple method, recommended for grayscale images (though it supports multichannel images)
void simpleMethod ( const GpuMat & src , GpuMat & dst , float h , int search_window = 21 , int block_size = 7 , Stream & s = Stream : : Null ( ) ) ;
//! Processes luminance and color components separatelly
void labMethod ( const GpuMat & src , GpuMat & dst , float h_luminance , float h_color , int search_window = 21 , int block_size = 7 , Stream & s = Stream : : Null ( ) ) ;
private :
GpuMat buffer , extended_src_buffer ;
GpuMat lab , l , ab ;
} ;
struct CV_EXPORTS CannyBuf
{
void create ( const Size & image_size , int apperture_size = 3 ) ;
void release ( ) ;
GpuMat dx , dy ;
GpuMat mag ;
GpuMat map ;
GpuMat st1 , st2 ;
Ptr < FilterEngine_GPU > filterDX , filterDY ;
} ;
CV_EXPORTS void Canny ( const GpuMat & image , GpuMat & edges , double low_thresh , double high_thresh , int apperture_size = 3 , bool L2gradient = false ) ;
CV_EXPORTS void Canny ( const GpuMat & image , CannyBuf & buf , GpuMat & edges , double low_thresh , double high_thresh , int apperture_size = 3 , bool L2gradient = false ) ;
CV_EXPORTS void Canny ( const GpuMat & dx , const GpuMat & dy , GpuMat & edges , double low_thresh , double high_thresh , bool L2gradient = false ) ;
CV_EXPORTS void Canny ( const GpuMat & dx , const GpuMat & dy , CannyBuf & buf , GpuMat & edges , double low_thresh , double high_thresh , bool L2gradient = false ) ;
class CV_EXPORTS ImagePyramid
{
public :
inline ImagePyramid ( ) : nLayers_ ( 0 ) { }
inline ImagePyramid ( const GpuMat & img , int nLayers , Stream & stream = Stream : : Null ( ) )
{
build ( img , nLayers , stream ) ;
}
void build ( const GpuMat & img , int nLayers , Stream & stream = Stream : : Null ( ) ) ;
void getLayer ( GpuMat & outImg , Size outRoi , Stream & stream = Stream : : Null ( ) ) const ;
inline void release ( )
{
layer0_ . release ( ) ;
pyramid_ . clear ( ) ;
nLayers_ = 0 ;
}
private :
GpuMat layer0_ ;
std : : vector < GpuMat > pyramid_ ;
int nLayers_ ;
} ;
//! HoughLines
struct HoughLinesBuf
{
GpuMat accum ;
GpuMat list ;
} ;
CV_EXPORTS void HoughLines ( const GpuMat & src , GpuMat & lines , float rho , float theta , int threshold , bool doSort = false , int maxLines = 4096 ) ;
CV_EXPORTS void HoughLines ( const GpuMat & src , GpuMat & lines , HoughLinesBuf & buf , float rho , float theta , int threshold , bool doSort = false , int maxLines = 4096 ) ;
CV_EXPORTS void HoughLinesDownload ( const GpuMat & d_lines , OutputArray h_lines , OutputArray h_votes = noArray ( ) ) ;
//! HoughLinesP
//! finds line segments in the black-n-white image using probabalistic Hough transform
CV_EXPORTS void HoughLinesP ( const GpuMat & image , GpuMat & lines , HoughLinesBuf & buf , float rho , float theta , int minLineLength , int maxLineGap , int maxLines = 4096 ) ;
//! HoughCircles
struct HoughCirclesBuf
{
GpuMat edges ;
GpuMat accum ;
GpuMat list ;
CannyBuf cannyBuf ;
} ;
CV_EXPORTS void HoughCircles ( const GpuMat & src , GpuMat & circles , int method , float dp , float minDist , int cannyThreshold , int votesThreshold , int minRadius , int maxRadius , int maxCircles = 4096 ) ;
CV_EXPORTS void HoughCircles ( const GpuMat & src , GpuMat & circles , HoughCirclesBuf & buf , int method , float dp , float minDist , int cannyThreshold , int votesThreshold , int minRadius , int maxRadius , int maxCircles = 4096 ) ;
CV_EXPORTS void HoughCirclesDownload ( const GpuMat & d_circles , OutputArray h_circles ) ;
//! finds arbitrary template in the grayscale image using Generalized Hough Transform
//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122.
//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038.
class CV_EXPORTS GeneralizedHough_GPU : public cv : : Algorithm
{
public :
static Ptr < GeneralizedHough_GPU > create ( int method ) ;
virtual ~ GeneralizedHough_GPU ( ) ;
//! set template to search
void setTemplate ( const GpuMat & templ , int cannyThreshold = 100 , Point templCenter = Point ( - 1 , - 1 ) ) ;
void setTemplate ( const GpuMat & edges , const GpuMat & dx , const GpuMat & dy , Point templCenter = Point ( - 1 , - 1 ) ) ;
//! find template on image
void detect ( const GpuMat & image , GpuMat & positions , int cannyThreshold = 100 ) ;
void detect ( const GpuMat & edges , const GpuMat & dx , const GpuMat & dy , GpuMat & positions ) ;
void download ( const GpuMat & d_positions , OutputArray h_positions , OutputArray h_votes = noArray ( ) ) ;
void release ( ) ;
protected :
virtual void setTemplateImpl ( const GpuMat & edges , const GpuMat & dx , const GpuMat & dy , Point templCenter ) = 0 ;
virtual void detectImpl ( const GpuMat & edges , const GpuMat & dx , const GpuMat & dy , GpuMat & positions ) = 0 ;
virtual void releaseImpl ( ) = 0 ;
private :
GpuMat edges_ ;
CannyBuf cannyBuf_ ;
} ;
////////////////////////////// Matrix reductions //////////////////////////////
//! computes mean value and standard deviation of all or selected array elements
//! supports only CV_8UC1 type
CV_EXPORTS void meanStdDev ( const GpuMat & mtx , Scalar & mean , Scalar & stddev ) ;
//! buffered version
CV_EXPORTS void meanStdDev ( const GpuMat & mtx , Scalar & mean , Scalar & stddev , GpuMat & buf ) ;
//! computes norm of array
//! supports NORM_INF, NORM_L1, NORM_L2
//! supports all matrices except 64F
CV_EXPORTS double norm ( const GpuMat & src1 , int normType = NORM_L2 ) ;
CV_EXPORTS double norm ( const GpuMat & src1 , int normType , GpuMat & buf ) ;
CV_EXPORTS double norm ( const GpuMat & src1 , int normType , const GpuMat & mask , GpuMat & buf ) ;
//! computes norm of the difference between two arrays
//! supports NORM_INF, NORM_L1, NORM_L2
//! supports only CV_8UC1 type
CV_EXPORTS double norm ( const GpuMat & src1 , const GpuMat & src2 , int normType = NORM_L2 ) ;
//! computes sum of array elements
//! supports only single channel images
CV_EXPORTS Scalar sum ( const GpuMat & src ) ;
CV_EXPORTS Scalar sum ( const GpuMat & src , GpuMat & buf ) ;
CV_EXPORTS Scalar sum ( const GpuMat & src , const GpuMat & mask , GpuMat & buf ) ;
//! computes sum of array elements absolute values
//! supports only single channel images
CV_EXPORTS Scalar absSum ( const GpuMat & src ) ;
CV_EXPORTS Scalar absSum ( const GpuMat & src , GpuMat & buf ) ;
CV_EXPORTS Scalar absSum ( const GpuMat & src , const GpuMat & mask , GpuMat & buf ) ;
//! computes squared sum of array elements
//! supports only single channel images
CV_EXPORTS Scalar sqrSum ( const GpuMat & src ) ;
CV_EXPORTS Scalar sqrSum ( const GpuMat & src , GpuMat & buf ) ;
CV_EXPORTS Scalar sqrSum ( const GpuMat & src , const GpuMat & mask , GpuMat & buf ) ;
//! finds global minimum and maximum array elements and returns their values
CV_EXPORTS void minMax ( const GpuMat & src , double * minVal , double * maxVal = 0 , const GpuMat & mask = GpuMat ( ) ) ;
CV_EXPORTS void minMax ( const GpuMat & src , double * minVal , double * maxVal , const GpuMat & mask , GpuMat & buf ) ;
//! finds global minimum and maximum array elements and returns their values with locations
CV_EXPORTS void minMaxLoc ( const GpuMat & src , double * minVal , double * maxVal = 0 , Point * minLoc = 0 , Point * maxLoc = 0 ,
const GpuMat & mask = GpuMat ( ) ) ;
CV_EXPORTS void minMaxLoc ( const GpuMat & src , double * minVal , double * maxVal , Point * minLoc , Point * maxLoc ,
const GpuMat & mask , GpuMat & valbuf , GpuMat & locbuf ) ;
//! counts non-zero array elements
CV_EXPORTS int countNonZero ( const GpuMat & src ) ;
CV_EXPORTS int countNonZero ( const GpuMat & src , GpuMat & buf ) ;
//! reduces a matrix to a vector
CV_EXPORTS void reduce ( const GpuMat & mtx , GpuMat & vec , int dim , int reduceOp , int dtype = - 1 , Stream & stream = Stream : : Null ( ) ) ;
///////////////////////////// Calibration 3D //////////////////////////////////
CV_EXPORTS void transformPoints ( const GpuMat & src , const Mat & rvec , const Mat & tvec ,
GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
CV_EXPORTS void projectPoints ( const GpuMat & src , const Mat & rvec , const Mat & tvec ,
const Mat & camera_mat , const Mat & dist_coef , GpuMat & dst ,
Stream & stream = Stream : : Null ( ) ) ;
CV_EXPORTS void solvePnPRansac ( const Mat & object , const Mat & image , const Mat & camera_mat ,
const Mat & dist_coef , Mat & rvec , Mat & tvec , bool use_extrinsic_guess = false ,
int num_iters = 100 , float max_dist = 8.0 , int min_inlier_count = 100 ,
std : : vector < int > * inliers = NULL ) ;
//////////////////////////////// Image Labeling ////////////////////////////////
//!performs labeling via graph cuts of a 2D regular 4-connected graph.
CV_EXPORTS void graphcut ( GpuMat & terminals , GpuMat & leftTransp , GpuMat & rightTransp , GpuMat & top , GpuMat & bottom , GpuMat & labels ,
GpuMat & buf , Stream & stream = Stream : : Null ( ) ) ;
//!performs labeling via graph cuts of a 2D regular 8-connected graph.
CV_EXPORTS void graphcut ( GpuMat & terminals , GpuMat & leftTransp , GpuMat & rightTransp , GpuMat & top , GpuMat & topLeft , GpuMat & topRight ,
GpuMat & bottom , GpuMat & bottomLeft , GpuMat & bottomRight ,
GpuMat & labels ,
GpuMat & buf , Stream & stream = Stream : : Null ( ) ) ;
//! compute mask for Generalized Flood fill componetns labeling.
CV_EXPORTS void connectivityMask ( const GpuMat & image , GpuMat & mask , const cv : : Scalar & lo , const cv : : Scalar & hi , Stream & stream = Stream : : Null ( ) ) ;
//! performs connected componnents labeling.
CV_EXPORTS void labelComponents ( const GpuMat & mask , GpuMat & components , int flags = 0 , Stream & stream = Stream : : Null ( ) ) ;
////////////////////////////////// Histograms //////////////////////////////////
//! Compute levels with even distribution. levels will have 1 row and nLevels cols and CV_32SC1 type.
CV_EXPORTS void evenLevels ( GpuMat & levels , int nLevels , int lowerLevel , int upperLevel ) ;
//! Calculates histogram with evenly distributed bins for signle channel source.
//! Supports CV_8UC1, CV_16UC1 and CV_16SC1 source types.
//! Output hist will have one row and histSize cols and CV_32SC1 type.
CV_EXPORTS void histEven ( const GpuMat & src , GpuMat & hist , int histSize , int lowerLevel , int upperLevel , Stream & stream = Stream : : Null ( ) ) ;
CV_EXPORTS void histEven ( const GpuMat & src , GpuMat & hist , GpuMat & buf , int histSize , int lowerLevel , int upperLevel , Stream & stream = Stream : : Null ( ) ) ;
//! Calculates histogram with evenly distributed bins for four-channel source.
//! All channels of source are processed separately.
//! Supports CV_8UC4, CV_16UC4 and CV_16SC4 source types.
//! Output hist[i] will have one row and histSize[i] cols and CV_32SC1 type.
CV_EXPORTS void histEven ( const GpuMat & src , GpuMat hist [ 4 ] , int histSize [ 4 ] , int lowerLevel [ 4 ] , int upperLevel [ 4 ] , Stream & stream = Stream : : Null ( ) ) ;
CV_EXPORTS void histEven ( const GpuMat & src , GpuMat hist [ 4 ] , GpuMat & buf , int histSize [ 4 ] , int lowerLevel [ 4 ] , int upperLevel [ 4 ] , Stream & stream = Stream : : Null ( ) ) ;
//! Calculates histogram with bins determined by levels array.
//! levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
//! Supports CV_8UC1, CV_16UC1, CV_16SC1 and CV_32FC1 source types.
//! Output hist will have one row and (levels.cols-1) cols and CV_32SC1 type.
CV_EXPORTS void histRange ( const GpuMat & src , GpuMat & hist , const GpuMat & levels , Stream & stream = Stream : : Null ( ) ) ;
CV_EXPORTS void histRange ( const GpuMat & src , GpuMat & hist , const GpuMat & levels , GpuMat & buf , Stream & stream = Stream : : Null ( ) ) ;
//! Calculates histogram with bins determined by levels array.
//! All levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise.
//! All channels of source are processed separately.
//! Supports CV_8UC4, CV_16UC4, CV_16SC4 and CV_32FC4 source types.
//! Output hist[i] will have one row and (levels[i].cols-1) cols and CV_32SC1 type.
CV_EXPORTS void histRange ( const GpuMat & src , GpuMat hist [ 4 ] , const GpuMat levels [ 4 ] , Stream & stream = Stream : : Null ( ) ) ;
CV_EXPORTS void histRange ( const GpuMat & src , GpuMat hist [ 4 ] , const GpuMat levels [ 4 ] , GpuMat & buf , Stream & stream = Stream : : Null ( ) ) ;
//! Calculates histogram for 8u one channel image
//! Output hist will have one row, 256 cols and CV32SC1 type.
CV_EXPORTS void calcHist ( const GpuMat & src , GpuMat & hist , Stream & stream = Stream : : Null ( ) ) ;
CV_EXPORTS void calcHist ( const GpuMat & src , GpuMat & hist , GpuMat & buf , Stream & stream = Stream : : Null ( ) ) ;
//! normalizes the grayscale image brightness and contrast by normalizing its histogram
CV_EXPORTS void equalizeHist ( const GpuMat & src , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
CV_EXPORTS void equalizeHist ( const GpuMat & src , GpuMat & dst , GpuMat & hist , Stream & stream = Stream : : Null ( ) ) ;
CV_EXPORTS void equalizeHist ( const GpuMat & src , GpuMat & dst , GpuMat & hist , GpuMat & buf , Stream & stream = Stream : : Null ( ) ) ;
class CV_EXPORTS CLAHE : public cv : : CLAHE
{
public :
using cv : : CLAHE : : apply ;
virtual void apply ( InputArray src , OutputArray dst , Stream & stream ) = 0 ;
} ;
CV_EXPORTS Ptr < cv : : gpu : : CLAHE > createCLAHE ( double clipLimit = 40.0 , Size tileGridSize = Size ( 8 , 8 ) ) ;
//////////////////////////////// StereoBM_GPU ////////////////////////////////
class CV_EXPORTS StereoBM_GPU
{
public :
enum { BASIC_PRESET = 0 , PREFILTER_XSOBEL = 1 } ;
enum { DEFAULT_NDISP = 64 , DEFAULT_WINSZ = 19 } ;
//! the default constructor
StereoBM_GPU ( ) ;
//! the full constructor taking the camera-specific preset, number of disparities and the SAD window size. ndisparities must be multiple of 8.
StereoBM_GPU ( int preset , int ndisparities = DEFAULT_NDISP , int winSize = DEFAULT_WINSZ ) ;
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair
//! Output disparity has CV_8U type.
void operator ( ) ( const GpuMat & left , const GpuMat & right , GpuMat & disparity , Stream & stream = Stream : : Null ( ) ) ;
//! Some heuristics that tries to estmate
// if current GPU will be faster than CPU in this algorithm.
// It queries current active device.
static bool checkIfGpuCallReasonable ( ) ;
int preset ;
int ndisp ;
int winSize ;
// If avergeTexThreshold == 0 => post procesing is disabled
// If avergeTexThreshold != 0 then disparity is set 0 in each point (x,y) where for left image
// SumOfHorizontalGradiensInWindow(x, y, winSize) < (winSize * winSize) * avergeTexThreshold
// i.e. input left image is low textured.
float avergeTexThreshold ;
private :
GpuMat minSSD , leBuf , riBuf ;
} ;
////////////////////////// StereoBeliefPropagation ///////////////////////////
// "Efficient Belief Propagation for Early Vision"
// P.Felzenszwalb
class CV_EXPORTS StereoBeliefPropagation
{
public :
enum { DEFAULT_NDISP = 64 } ;
enum { DEFAULT_ITERS = 5 } ;
enum { DEFAULT_LEVELS = 5 } ;
static void estimateRecommendedParams ( int width , int height , int & ndisp , int & iters , int & levels ) ;
//! the default constructor
explicit StereoBeliefPropagation ( int ndisp = DEFAULT_NDISP ,
int iters = DEFAULT_ITERS ,
int levels = DEFAULT_LEVELS ,
int msg_type = CV_32F ) ;
//! the full constructor taking the number of disparities, number of BP iterations on each level,
//! number of levels, truncation of data cost, data weight,
//! truncation of discontinuity cost and discontinuity single jump
//! DataTerm = data_weight * min(fabs(I2-I1), max_data_term)
//! DiscTerm = min(disc_single_jump * fabs(f1-f2), max_disc_term)
//! please see paper for more details
StereoBeliefPropagation ( int ndisp , int iters , int levels ,
float max_data_term , float data_weight ,
float max_disc_term , float disc_single_jump ,
int msg_type = CV_32F ) ;
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
void operator ( ) ( const GpuMat & left , const GpuMat & right , GpuMat & disparity , Stream & stream = Stream : : Null ( ) ) ;
//! version for user specified data term
void operator ( ) ( const GpuMat & data , GpuMat & disparity , Stream & stream = Stream : : Null ( ) ) ;
int ndisp ;
int iters ;
int levels ;
float max_data_term ;
float data_weight ;
float max_disc_term ;
float disc_single_jump ;
int msg_type ;
private :
GpuMat u , d , l , r , u2 , d2 , l2 , r2 ;
std : : vector < GpuMat > datas ;
GpuMat out ;
} ;
/////////////////////////// StereoConstantSpaceBP ///////////////////////////
// "A Constant-Space Belief Propagation Algorithm for Stereo Matching"
// Qingxiong Yang, Liang Wang, Narendra Ahuja
// http://vision.ai.uiuc.edu/~qyang6/
class CV_EXPORTS StereoConstantSpaceBP
{
public :
enum { DEFAULT_NDISP = 128 } ;
enum { DEFAULT_ITERS = 8 } ;
enum { DEFAULT_LEVELS = 4 } ;
enum { DEFAULT_NR_PLANE = 4 } ;
static void estimateRecommendedParams ( int width , int height , int & ndisp , int & iters , int & levels , int & nr_plane ) ;
//! the default constructor
explicit StereoConstantSpaceBP ( int ndisp = DEFAULT_NDISP ,
int iters = DEFAULT_ITERS ,
int levels = DEFAULT_LEVELS ,
int nr_plane = DEFAULT_NR_PLANE ,
int msg_type = CV_32F ) ;
//! the full constructor taking the number of disparities, number of BP iterations on each level,
//! number of levels, number of active disparity on the first level, truncation of data cost, data weight,
//! truncation of discontinuity cost, discontinuity single jump and minimum disparity threshold
StereoConstantSpaceBP ( int ndisp , int iters , int levels , int nr_plane ,
float max_data_term , float data_weight , float max_disc_term , float disc_single_jump ,
int min_disp_th = 0 ,
int msg_type = CV_32F ) ;
//! the stereo correspondence operator. Finds the disparity for the specified rectified stereo pair,
//! if disparity is empty output type will be CV_16S else output type will be disparity.type().
void operator ( ) ( const GpuMat & left , const GpuMat & right , GpuMat & disparity , Stream & stream = Stream : : Null ( ) ) ;
int ndisp ;
int iters ;
int levels ;
int nr_plane ;
float max_data_term ;
float data_weight ;
float max_disc_term ;
float disc_single_jump ;
int min_disp_th ;
int msg_type ;
bool use_local_init_data_cost ;
private :
GpuMat messages_buffers ;
GpuMat temp ;
GpuMat out ;
} ;
/////////////////////////// DisparityBilateralFilter ///////////////////////////
// Disparity map refinement using joint bilateral filtering given a single color image.
// Qingxiong Yang, Liang Wang, Narendra Ahuja
// http://vision.ai.uiuc.edu/~qyang6/
class CV_EXPORTS DisparityBilateralFilter
{
public :
enum { DEFAULT_NDISP = 64 } ;
enum { DEFAULT_RADIUS = 3 } ;
enum { DEFAULT_ITERS = 1 } ;
//! the default constructor
explicit DisparityBilateralFilter ( int ndisp = DEFAULT_NDISP , int radius = DEFAULT_RADIUS , int iters = DEFAULT_ITERS ) ;
//! the full constructor taking the number of disparities, filter radius,
//! number of iterations, truncation of data continuity, truncation of disparity continuity
//! and filter range sigma
DisparityBilateralFilter ( int ndisp , int radius , int iters , float edge_threshold , float max_disc_threshold , float sigma_range ) ;
//! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image.
//! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type.
void operator ( ) ( const GpuMat & disparity , const GpuMat & image , GpuMat & dst , Stream & stream = Stream : : Null ( ) ) ;
private :
int ndisp ;
int radius ;
int iters ;
float edge_threshold ;
float max_disc_threshold ;
float sigma_range ;
GpuMat table_color ;
GpuMat table_space ;
} ;
//////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
struct CV_EXPORTS HOGConfidence
{
double scale ;
std : : vector < Point > locations ;
std : : vector < double > confidences ;
std : : vector < double > part_scores [ 4 ] ;
} ;
struct CV_EXPORTS HOGDescriptor
{
enum { DEFAULT_WIN_SIGMA = - 1 } ;
enum { DEFAULT_NLEVELS = 64 } ;
enum { DESCR_FORMAT_ROW_BY_ROW , DESCR_FORMAT_COL_BY_COL } ;
HOGDescriptor ( Size win_size = Size ( 64 , 128 ) , Size block_size = Size ( 16 , 16 ) ,
Size block_stride = Size ( 8 , 8 ) , Size cell_size = Size ( 8 , 8 ) ,
int nbins = 9 , double win_sigma = DEFAULT_WIN_SIGMA ,
double threshold_L2hys = 0.2 , bool gamma_correction = true ,
int nlevels = DEFAULT_NLEVELS ) ;
size_t getDescriptorSize ( ) const ;
size_t getBlockHistogramSize ( ) const ;
void setSVMDetector ( const std : : vector < float > & detector ) ;
static std : : vector < float > getDefaultPeopleDetector ( ) ;
static std : : vector < float > getPeopleDetector48x96 ( ) ;
static std : : vector < float > getPeopleDetector64x128 ( ) ;
void detect ( const GpuMat & img , std : : vector < Point > & found_locations ,
double hit_threshold = 0 , Size win_stride = Size ( ) ,
Size padding = Size ( ) ) ;
void detectMultiScale ( const GpuMat & img , std : : vector < Rect > & found_locations ,
double hit_threshold = 0 , Size win_stride = Size ( ) ,
Size padding = Size ( ) , double scale0 = 1.05 ,
int group_threshold = 2 ) ;
void computeConfidence ( const GpuMat & img , std : : vector < Point > & hits , double hit_threshold ,
Size win_stride , Size padding , std : : vector < Point > & locations , std : : vector < double > & confidences ) ;
void computeConfidenceMultiScale ( const GpuMat & img , std : : vector < Rect > & found_locations ,
double hit_threshold , Size win_stride , Size padding ,
std : : vector < HOGConfidence > & conf_out , int group_threshold ) ;
void getDescriptors ( const GpuMat & img , Size win_stride ,
GpuMat & descriptors ,
int descr_format = DESCR_FORMAT_COL_BY_COL ) ;
Size win_size ;
Size block_size ;
Size block_stride ;
Size cell_size ;
int nbins ;
double win_sigma ;
double threshold_L2hys ;
bool gamma_correction ;
int nlevels ;
protected :
void computeBlockHistograms ( const GpuMat & img ) ;
void computeGradient ( const GpuMat & img , GpuMat & grad , GpuMat & qangle ) ;
double getWinSigma ( ) const ;
bool checkDetectorSize ( ) const ;
static int numPartsWithin ( int size , int part_size , int stride ) ;
static Size numPartsWithin ( Size size , Size part_size , Size stride ) ;
// Coefficients of the separating plane
float free_coef ;
GpuMat detector ;
// Results of the last classification step
GpuMat labels , labels_buf ;
Mat labels_host ;
// Results of the last histogram evaluation step
GpuMat block_hists , block_hists_buf ;
// Gradients conputation results
GpuMat grad , qangle , grad_buf , qangle_buf ;
// returns subbuffer with required size, reallocates buffer if nessesary.
static GpuMat getBuffer ( const Size & sz , int type , GpuMat & buf ) ;
static GpuMat getBuffer ( int rows , int cols , int type , GpuMat & buf ) ;
std : : vector < GpuMat > image_scales ;
} ;
////////////////////////////////// BruteForceMatcher //////////////////////////////////
class CV_EXPORTS BFMatcher_GPU
{
public :
explicit BFMatcher_GPU ( int norm = cv : : NORM_L2 ) ;
// Add descriptors to train descriptor collection
void add ( const std : : vector < GpuMat > & descCollection ) ;
// Get train descriptors collection
const std : : vector < GpuMat > & getTrainDescriptors ( ) const ;
// Clear train descriptors collection
void clear ( ) ;
// Return true if there are not train descriptors in collection
bool empty ( ) const ;
// Return true if the matcher supports mask in match methods
bool isMaskSupported ( ) const ;
// Find one best match for each query descriptor
void matchSingle ( const GpuMat & query , const GpuMat & train ,
GpuMat & trainIdx , GpuMat & distance ,
const GpuMat & mask = GpuMat ( ) , Stream & stream = Stream : : Null ( ) ) ;
// Download trainIdx and distance and convert it to CPU vector with DMatch
static void matchDownload ( const GpuMat & trainIdx , const GpuMat & distance , std : : vector < DMatch > & matches ) ;
// Convert trainIdx and distance to vector with DMatch
static void matchConvert ( const Mat & trainIdx , const Mat & distance , std : : vector < DMatch > & matches ) ;
// Find one best match for each query descriptor
void match ( const GpuMat & query , const GpuMat & train , std : : vector < DMatch > & matches , const GpuMat & mask = GpuMat ( ) ) ;
// Make gpu collection of trains and masks in suitable format for matchCollection function
void makeGpuCollection ( GpuMat & trainCollection , GpuMat & maskCollection , const std : : vector < GpuMat > & masks = std : : vector < GpuMat > ( ) ) ;
// Find one best match from train collection for each query descriptor
void matchCollection ( const GpuMat & query , const GpuMat & trainCollection ,
GpuMat & trainIdx , GpuMat & imgIdx , GpuMat & distance ,
const GpuMat & masks = GpuMat ( ) , Stream & stream = Stream : : Null ( ) ) ;
// Download trainIdx, imgIdx and distance and convert it to vector with DMatch
static void matchDownload ( const GpuMat & trainIdx , const GpuMat & imgIdx , const GpuMat & distance , std : : vector < DMatch > & matches ) ;
// Convert trainIdx, imgIdx and distance to vector with DMatch
static void matchConvert ( const Mat & trainIdx , const Mat & imgIdx , const Mat & distance , std : : vector < DMatch > & matches ) ;
// Find one best match from train collection for each query descriptor.
void match ( const GpuMat & query , std : : vector < DMatch > & matches , const std : : vector < GpuMat > & masks = std : : vector < GpuMat > ( ) ) ;
// Find k best matches for each query descriptor (in increasing order of distances)
void knnMatchSingle ( const GpuMat & query , const GpuMat & train ,
GpuMat & trainIdx , GpuMat & distance , GpuMat & allDist , int k ,
const GpuMat & mask = GpuMat ( ) , Stream & stream = Stream : : Null ( ) ) ;
// Download trainIdx and distance and convert it to vector with DMatch
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
static void knnMatchDownload ( const GpuMat & trainIdx , const GpuMat & distance ,
std : : vector < std : : vector < DMatch > > & matches , bool compactResult = false ) ;
// Convert trainIdx and distance to vector with DMatch
static void knnMatchConvert ( const Mat & trainIdx , const Mat & distance ,
std : : vector < std : : vector < DMatch > > & matches , bool compactResult = false ) ;
// Find k best matches for each query descriptor (in increasing order of distances).
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
void knnMatch ( const GpuMat & query , const GpuMat & train ,
std : : vector < std : : vector < DMatch > > & matches , int k , const GpuMat & mask = GpuMat ( ) ,
bool compactResult = false ) ;
// Find k best matches from train collection for each query descriptor (in increasing order of distances)
void knnMatch2Collection ( const GpuMat & query , const GpuMat & trainCollection ,
GpuMat & trainIdx , GpuMat & imgIdx , GpuMat & distance ,
const GpuMat & maskCollection = GpuMat ( ) , Stream & stream = Stream : : Null ( ) ) ;
// Download trainIdx and distance and convert it to vector with DMatch
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
static void knnMatch2Download ( const GpuMat & trainIdx , const GpuMat & imgIdx , const GpuMat & distance ,
std : : vector < std : : vector < DMatch > > & matches , bool compactResult = false ) ;
// Convert trainIdx and distance to vector with DMatch
static void knnMatch2Convert ( const Mat & trainIdx , const Mat & imgIdx , const Mat & distance ,
std : : vector < std : : vector < DMatch > > & matches , bool compactResult = false ) ;
// Find k best matches for each query descriptor (in increasing order of distances).
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
void knnMatch ( const GpuMat & query , std : : vector < std : : vector < DMatch > > & matches , int k ,
const std : : vector < GpuMat > & masks = std : : vector < GpuMat > ( ) , bool compactResult = false ) ;
// Find best matches for each query descriptor which have distance less than maxDistance.
// nMatches.at<int>(0, queryIdx) will contain matches count for queryIdx.
// carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
// because it didn't have enough memory.
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10),
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
// Matches doesn't sorted.
void radiusMatchSingle ( const GpuMat & query , const GpuMat & train ,
GpuMat & trainIdx , GpuMat & distance , GpuMat & nMatches , float maxDistance ,
const GpuMat & mask = GpuMat ( ) , Stream & stream = Stream : : Null ( ) ) ;
// Download trainIdx, nMatches and distance and convert it to vector with DMatch.
// matches will be sorted in increasing order of distances.
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
static void radiusMatchDownload ( const GpuMat & trainIdx , const GpuMat & distance , const GpuMat & nMatches ,
std : : vector < std : : vector < DMatch > > & matches , bool compactResult = false ) ;
// Convert trainIdx, nMatches and distance to vector with DMatch.
static void radiusMatchConvert ( const Mat & trainIdx , const Mat & distance , const Mat & nMatches ,
std : : vector < std : : vector < DMatch > > & matches , bool compactResult = false ) ;
// Find best matches for each query descriptor which have distance less than maxDistance
// in increasing order of distances).
void radiusMatch ( const GpuMat & query , const GpuMat & train ,
std : : vector < std : : vector < DMatch > > & matches , float maxDistance ,
const GpuMat & mask = GpuMat ( ) , bool compactResult = false ) ;
// Find best matches for each query descriptor which have distance less than maxDistance.
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10),
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
// Matches doesn't sorted.
void radiusMatchCollection ( const GpuMat & query , GpuMat & trainIdx , GpuMat & imgIdx , GpuMat & distance , GpuMat & nMatches , float maxDistance ,
const std : : vector < GpuMat > & masks = std : : vector < GpuMat > ( ) , Stream & stream = Stream : : Null ( ) ) ;
// Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch.
// matches will be sorted in increasing order of distances.
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
static void radiusMatchDownload ( const GpuMat & trainIdx , const GpuMat & imgIdx , const GpuMat & distance , const GpuMat & nMatches ,
std : : vector < std : : vector < DMatch > > & matches , bool compactResult = false ) ;
// Convert trainIdx, nMatches and distance to vector with DMatch.
static void radiusMatchConvert ( const Mat & trainIdx , const Mat & imgIdx , const Mat & distance , const Mat & nMatches ,
std : : vector < std : : vector < DMatch > > & matches , bool compactResult = false ) ;
// Find best matches from train collection for each query descriptor which have distance less than
// maxDistance (in increasing order of distances).
void radiusMatch ( const GpuMat & query , std : : vector < std : : vector < DMatch > > & matches , float maxDistance ,
const std : : vector < GpuMat > & masks = std : : vector < GpuMat > ( ) , bool compactResult = false ) ;
int norm ;
private :
std : : vector < GpuMat > trainDescCollection ;
} ;
template < class Distance >
class CV_EXPORTS BruteForceMatcher_GPU ;
template < typename T >
class CV_EXPORTS BruteForceMatcher_GPU < L1 < T > > : public BFMatcher_GPU
{
public :
explicit BruteForceMatcher_GPU ( ) : BFMatcher_GPU ( NORM_L1 ) { }
explicit BruteForceMatcher_GPU ( L1 < T > /*d*/ ) : BFMatcher_GPU ( NORM_L1 ) { }
} ;
template < typename T >
class CV_EXPORTS BruteForceMatcher_GPU < L2 < T > > : public BFMatcher_GPU
{
public :
explicit BruteForceMatcher_GPU ( ) : BFMatcher_GPU ( NORM_L2 ) { }
explicit BruteForceMatcher_GPU ( L2 < T > /*d*/ ) : BFMatcher_GPU ( NORM_L2 ) { }
} ;
template < > class CV_EXPORTS BruteForceMatcher_GPU < Hamming > : public BFMatcher_GPU
{
public :
explicit BruteForceMatcher_GPU ( ) : BFMatcher_GPU ( NORM_HAMMING ) { }
explicit BruteForceMatcher_GPU ( Hamming /*d*/ ) : BFMatcher_GPU ( NORM_HAMMING ) { }
} ;
////////////////////////////////// CascadeClassifier_GPU //////////////////////////////////////////
// The cascade classifier class for object detection: supports old haar and new lbp xlm formats and nvbin for haar cascades olny.
class CV_EXPORTS CascadeClassifier_GPU
{
public :
CascadeClassifier_GPU ( ) ;
CascadeClassifier_GPU ( const String & filename ) ;
~ CascadeClassifier_GPU ( ) ;
bool empty ( ) const ;
bool load ( const String & filename ) ;
void release ( ) ;
/* returns number of detected objects */
int detectMultiScale ( const GpuMat & image , GpuMat & objectsBuf , double scaleFactor = 1.2 , int minNeighbors = 4 , Size minSize = Size ( ) ) ;
int detectMultiScale ( const GpuMat & image , GpuMat & objectsBuf , Size maxObjectSize , Size minSize = Size ( ) , double scaleFactor = 1.1 , int minNeighbors = 4 ) ;
bool findLargestObject ;
bool visualizeInPlace ;
Size getClassifierSize ( ) const ;
private :
struct CascadeClassifierImpl ;
CascadeClassifierImpl * impl ;
struct HaarCascade ;
struct LbpCascade ;
friend class CascadeClassifier_GPU_LBP ;
} ;
////////////////////////////////// FAST //////////////////////////////////////////
class CV_EXPORTS FAST_GPU
{
public :
enum
{
LOCATION_ROW = 0 ,
RESPONSE_ROW ,
ROWS_COUNT
} ;
// all features have same size
static const int FEATURE_SIZE = 7 ;
explicit FAST_GPU ( int threshold , bool nonmaxSupression = true , double keypointsRatio = 0.05 ) ;
//! finds the keypoints using FAST detector
//! supports only CV_8UC1 images
void operator ( ) ( const GpuMat & image , const GpuMat & mask , GpuMat & keypoints ) ;
void operator ( ) ( const GpuMat & image , const GpuMat & mask , std : : vector < KeyPoint > & keypoints ) ;
//! download keypoints from device to host memory
static void downloadKeypoints ( const GpuMat & d_keypoints , std : : vector < KeyPoint > & keypoints ) ;
//! convert keypoints to KeyPoint vector
static void convertKeypoints ( const Mat & h_keypoints , std : : vector < KeyPoint > & keypoints ) ;
//! release temporary buffer's memory
void release ( ) ;
bool nonmaxSupression ;
int threshold ;
//! max keypoints = keypointsRatio * img.size().area()
double keypointsRatio ;
//! find keypoints and compute it's response if nonmaxSupression is true
//! return count of detected keypoints
int calcKeyPointsLocation ( const GpuMat & image , const GpuMat & mask ) ;
//! get final array of keypoints
//! performs nonmax supression if needed
//! return final count of keypoints
int getKeyPoints ( GpuMat & keypoints ) ;
private :
GpuMat kpLoc_ ;
int count_ ;
GpuMat score_ ;
GpuMat d_keypoints_ ;
} ;
////////////////////////////////// ORB //////////////////////////////////////////
class CV_EXPORTS ORB_GPU
{
public :
enum
{
X_ROW = 0 ,
Y_ROW ,
RESPONSE_ROW ,
ANGLE_ROW ,
OCTAVE_ROW ,
SIZE_ROW ,
ROWS_COUNT
} ;
enum
{
DEFAULT_FAST_THRESHOLD = 20
} ;
//! Constructor
explicit ORB_GPU ( int nFeatures = 500 , float scaleFactor = 1.2f , int nLevels = 8 , int edgeThreshold = 31 ,
int firstLevel = 0 , int WTA_K = 2 , int scoreType = 0 , int patchSize = 31 ) ;
//! Compute the ORB features on an image
//! image - the image to compute the features (supports only CV_8UC1 images)
//! mask - the mask to apply
//! keypoints - the resulting keypoints
void operator ( ) ( const GpuMat & image , const GpuMat & mask , std : : vector < KeyPoint > & keypoints ) ;
void operator ( ) ( const GpuMat & image , const GpuMat & mask , GpuMat & keypoints ) ;
//! Compute the ORB features and descriptors on an image
//! image - the image to compute the features (supports only CV_8UC1 images)
//! mask - the mask to apply
//! keypoints - the resulting keypoints
//! descriptors - descriptors array
void operator ( ) ( const GpuMat & image , const GpuMat & mask , std : : vector < KeyPoint > & keypoints , GpuMat & descriptors ) ;
void operator ( ) ( const GpuMat & image , const GpuMat & mask , GpuMat & keypoints , GpuMat & descriptors ) ;
//! download keypoints from device to host memory
static void downloadKeyPoints ( const GpuMat & d_keypoints , std : : vector < KeyPoint > & keypoints ) ;
//! convert keypoints to KeyPoint vector
static void convertKeyPoints ( const Mat & d_keypoints , std : : vector < KeyPoint > & keypoints ) ;
//! returns the descriptor size in bytes
inline int descriptorSize ( ) const { return kBytes ; }
inline void setFastParams ( int threshold , bool nonmaxSupression = true )
{
fastDetector_ . threshold = threshold ;
fastDetector_ . nonmaxSupression = nonmaxSupression ;
}
//! release temporary buffer's memory
void release ( ) ;
//! if true, image will be blurred before descriptors calculation
bool blurForDescriptor ;
private :
enum { kBytes = 32 } ;
void buildScalePyramids ( const GpuMat & image , const GpuMat & mask ) ;
void computeKeyPointsPyramid ( ) ;
void computeDescriptors ( GpuMat & descriptors ) ;
void mergeKeyPoints ( GpuMat & keypoints ) ;
int nFeatures_ ;
float scaleFactor_ ;
int nLevels_ ;
int edgeThreshold_ ;
int firstLevel_ ;
int WTA_K_ ;
int scoreType_ ;
int patchSize_ ;
// The number of desired features per scale
std : : vector < size_t > n_features_per_level_ ;
// Points to compute BRIEF descriptors from
GpuMat pattern_ ;
std : : vector < GpuMat > imagePyr_ ;
std : : vector < GpuMat > maskPyr_ ;
GpuMat buf_ ;
std : : vector < GpuMat > keyPointsPyr_ ;
std : : vector < int > keyPointsCount_ ;
FAST_GPU fastDetector_ ;
Ptr < FilterEngine_GPU > blurFilter ;
GpuMat d_keypoints_ ;
} ;
////////////////////////////////// Optical Flow //////////////////////////////////////////
class CV_EXPORTS BroxOpticalFlow
{
public :
BroxOpticalFlow ( float alpha_ , float gamma_ , float scale_factor_ , int inner_iterations_ , int outer_iterations_ , int solver_iterations_ ) :
alpha ( alpha_ ) , gamma ( gamma_ ) , scale_factor ( scale_factor_ ) ,
inner_iterations ( inner_iterations_ ) , outer_iterations ( outer_iterations_ ) , solver_iterations ( solver_iterations_ )
{
}
//! Compute optical flow
//! frame0 - source frame (supports only CV_32FC1 type)
//! frame1 - frame to track (with the same size and type as frame0)
//! u - flow horizontal component (along x axis)
//! v - flow vertical component (along y axis)
void operator ( ) ( const GpuMat & frame0 , const GpuMat & frame1 , GpuMat & u , GpuMat & v , Stream & stream = Stream : : Null ( ) ) ;
//! flow smoothness
float alpha ;
//! gradient constancy importance
float gamma ;
//! pyramid scale factor
float scale_factor ;
//! number of lagged non-linearity iterations (inner loop)
int inner_iterations ;
//! number of warping iterations (number of pyramid levels)
int outer_iterations ;
//! number of linear system solver iterations
int solver_iterations ;
GpuMat buf ;
} ;
class CV_EXPORTS GoodFeaturesToTrackDetector_GPU
{
public :
explicit GoodFeaturesToTrackDetector_GPU ( int maxCorners = 1000 , double qualityLevel = 0.01 , double minDistance = 0.0 ,
int blockSize = 3 , bool useHarrisDetector = false , double harrisK = 0.04 ) ;
//! return 1 rows matrix with CV_32FC2 type
void operator ( ) ( const GpuMat & image , GpuMat & corners , const GpuMat & mask = GpuMat ( ) ) ;
int maxCorners ;
double qualityLevel ;
double minDistance ;
int blockSize ;
bool useHarrisDetector ;
double harrisK ;
void releaseMemory ( )
{
Dx_ . release ( ) ;
Dy_ . release ( ) ;
buf_ . release ( ) ;
eig_ . release ( ) ;
minMaxbuf_ . release ( ) ;
tmpCorners_ . release ( ) ;
}
private :
GpuMat Dx_ ;
GpuMat Dy_ ;
GpuMat buf_ ;
GpuMat eig_ ;
GpuMat minMaxbuf_ ;
GpuMat tmpCorners_ ;
} ;
inline GoodFeaturesToTrackDetector_GPU : : GoodFeaturesToTrackDetector_GPU ( int maxCorners_ , double qualityLevel_ , double minDistance_ ,
int blockSize_ , bool useHarrisDetector_ , double harrisK_ )
{
maxCorners = maxCorners_ ;
qualityLevel = qualityLevel_ ;
minDistance = minDistance_ ;
blockSize = blockSize_ ;
useHarrisDetector = useHarrisDetector_ ;
harrisK = harrisK_ ;
}
class CV_EXPORTS PyrLKOpticalFlow
{
public :
PyrLKOpticalFlow ( ) ;
void sparse ( const GpuMat & prevImg , const GpuMat & nextImg , const GpuMat & prevPts , GpuMat & nextPts ,
GpuMat & status , GpuMat * err = 0 ) ;
void dense ( const GpuMat & prevImg , const GpuMat & nextImg , GpuMat & u , GpuMat & v , GpuMat * err = 0 ) ;
void releaseMemory ( ) ;
Size winSize ;
int maxLevel ;
int iters ;
bool useInitialFlow ;
private :
std : : vector < GpuMat > prevPyr_ ;
std : : vector < GpuMat > nextPyr_ ;
GpuMat buf_ ;
GpuMat uPyr_ [ 2 ] ;
GpuMat vPyr_ [ 2 ] ;
} ;
class CV_EXPORTS FarnebackOpticalFlow
{
public :
FarnebackOpticalFlow ( )
{
numLevels = 5 ;
pyrScale = 0.5 ;
fastPyramids = false ;
winSize = 13 ;
numIters = 10 ;
polyN = 5 ;
polySigma = 1.1 ;
flags = 0 ;
}
int numLevels ;
double pyrScale ;
bool fastPyramids ;
int winSize ;
int numIters ;
int polyN ;
double polySigma ;
int flags ;
void operator ( ) ( const GpuMat & frame0 , const GpuMat & frame1 , GpuMat & flowx , GpuMat & flowy , Stream & s = Stream : : Null ( ) ) ;
void releaseMemory ( )
{
frames_ [ 0 ] . release ( ) ;
frames_ [ 1 ] . release ( ) ;
pyrLevel_ [ 0 ] . release ( ) ;
pyrLevel_ [ 1 ] . release ( ) ;
M_ . release ( ) ;
bufM_ . release ( ) ;
R_ [ 0 ] . release ( ) ;
R_ [ 1 ] . release ( ) ;
blurredFrame_ [ 0 ] . release ( ) ;
blurredFrame_ [ 1 ] . release ( ) ;
pyramid0_ . clear ( ) ;
pyramid1_ . clear ( ) ;
}
private :
void prepareGaussian (
int n , double sigma , float * g , float * xg , float * xxg ,
double & ig11 , double & ig03 , double & ig33 , double & ig55 ) ;
void setPolynomialExpansionConsts ( int n , double sigma ) ;
void updateFlow_boxFilter (
const GpuMat & R0 , const GpuMat & R1 , GpuMat & flowx , GpuMat & flowy ,
GpuMat & M , GpuMat & bufM , int blockSize , bool updateMatrices , Stream streams [ ] ) ;
void updateFlow_gaussianBlur (
const GpuMat & R0 , const GpuMat & R1 , GpuMat & flowx , GpuMat & flowy ,
GpuMat & M , GpuMat & bufM , int blockSize , bool updateMatrices , Stream streams [ ] ) ;
GpuMat frames_ [ 2 ] ;
GpuMat pyrLevel_ [ 2 ] , M_ , bufM_ , R_ [ 2 ] , blurredFrame_ [ 2 ] ;
std : : vector < GpuMat > pyramid0_ , pyramid1_ ;
} ;
// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
//
// see reference:
// [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
// [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
class CV_EXPORTS OpticalFlowDual_TVL1_GPU
{
public :
OpticalFlowDual_TVL1_GPU ( ) ;
void operator ( ) ( const GpuMat & I0 , const GpuMat & I1 , GpuMat & flowx , GpuMat & flowy ) ;
void collectGarbage ( ) ;
/**
* Time step of the numerical scheme .
*/
double tau ;
/**
* Weight parameter for the data term , attachment parameter .
* This is the most relevant parameter , which determines the smoothness of the output .
* The smaller this parameter is , the smoother the solutions we obtain .
* It depends on the range of motions of the images , so its value should be adapted to each image sequence .
*/
double lambda ;
/**
* Weight parameter for ( u - v ) ^ 2 , tightness parameter .
* It serves as a link between the attachment and the regularization terms .
* In theory , it should have a small value in order to maintain both parts in correspondence .
* The method is stable for a large range of values of this parameter .
*/
double theta ;
/**
* Number of scales used to create the pyramid of images .
*/
int nscales ;
/**
* Number of warpings per scale .
* Represents the number of times that I1 ( x + u0 ) and grad ( I1 ( x + u0 ) ) are computed per scale .
* This is a parameter that assures the stability of the method .
* It also affects the running time , so it is a compromise between speed and accuracy .
*/
int warps ;
/**
* Stopping criterion threshold used in the numerical scheme , which is a trade - off between precision and running time .
* A small value will yield more accurate solutions at the expense of a slower convergence .
*/
double epsilon ;
/**
* Stopping criterion iterations number used in the numerical scheme .
*/
int iterations ;
bool useInitialFlow ;
private :
void procOneScale ( const GpuMat & I0 , const GpuMat & I1 , GpuMat & u1 , GpuMat & u2 ) ;
std : : vector < GpuMat > I0s ;
std : : vector < GpuMat > I1s ;
std : : vector < GpuMat > u1s ;
std : : vector < GpuMat > u2s ;
GpuMat I1x_buf ;
GpuMat I1y_buf ;
GpuMat I1w_buf ;
GpuMat I1wx_buf ;
GpuMat I1wy_buf ;
GpuMat grad_buf ;
GpuMat rho_c_buf ;
GpuMat p11_buf ;
GpuMat p12_buf ;
GpuMat p21_buf ;
GpuMat p22_buf ;
GpuMat diff_buf ;
GpuMat norm_buf ;
} ;
//! Calculates optical flow for 2 images using block matching algorithm */
CV_EXPORTS void calcOpticalFlowBM ( const GpuMat & prev , const GpuMat & curr ,
Size block_size , Size shift_size , Size max_range , bool use_previous ,
GpuMat & velx , GpuMat & vely , GpuMat & buf ,
Stream & stream = Stream : : Null ( ) ) ;
class CV_EXPORTS FastOpticalFlowBM
{
public :
void operator ( ) ( const GpuMat & I0 , const GpuMat & I1 , GpuMat & flowx , GpuMat & flowy , int search_window = 21 , int block_window = 7 , Stream & s = Stream : : Null ( ) ) ;
private :
GpuMat buffer ;
GpuMat extended_I0 ;
GpuMat extended_I1 ;
} ;
//! Interpolate frames (images) using provided optical flow (displacement field).
//! frame0 - frame 0 (32-bit floating point images, single channel)
//! frame1 - frame 1 (the same type and size)
//! fu - forward horizontal displacement
//! fv - forward vertical displacement
//! bu - backward horizontal displacement
//! bv - backward vertical displacement
//! pos - new frame position
//! newFrame - new frame
//! buf - temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 GpuMat;
//! occlusion masks 0, occlusion masks 1,
//! interpolated forward flow 0, interpolated forward flow 1,
//! interpolated backward flow 0, interpolated backward flow 1
//!
CV_EXPORTS void interpolateFrames ( const GpuMat & frame0 , const GpuMat & frame1 ,
const GpuMat & fu , const GpuMat & fv ,
const GpuMat & bu , const GpuMat & bv ,
float pos , GpuMat & newFrame , GpuMat & buf ,
Stream & stream = Stream : : Null ( ) ) ;
CV_EXPORTS void createOpticalFlowNeedleMap ( const GpuMat & u , const GpuMat & v , GpuMat & vertex , GpuMat & colors ) ;
//////////////////////// Background/foreground segmentation ////////////////////////
// Foreground Object Detection from Videos Containing Complex Background.
// Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian.
// ACM MM2003 9p
class CV_EXPORTS FGDStatModel
{
public :
struct CV_EXPORTS Params
{
int Lc ; // Quantized levels per 'color' component. Power of two, typically 32, 64 or 128.
int N1c ; // Number of color vectors used to model normal background color variation at a given pixel.
int N2c ; // Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c.
// Used to allow the first N1c vectors to adapt over time to changing background.
int Lcc ; // Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64.
int N1cc ; // Number of color co-occurrence vectors used to model normal background color variation at a given pixel.
int N2cc ; // Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc.
// Used to allow the first N1cc vectors to adapt over time to changing background.
bool is_obj_without_holes ; // If TRUE we ignore holes within foreground blobs. Defaults to TRUE.
int perform_morphing ; // Number of erode-dilate-erode foreground-blob cleanup iterations.
// These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1.
float alpha1 ; // How quickly we forget old background pixel values seen. Typically set to 0.1.
float alpha2 ; // "Controls speed of feature learning". Depends on T. Typical value circa 0.005.
float alpha3 ; // Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1.
float delta ; // Affects color and color co-occurrence quantization, typically set to 2.
float T ; // A percentage value which determines when new features can be recognized as new background. (Typically 0.9).
float minArea ; // Discard foreground blobs whose bounding box is smaller than this threshold.
// default Params
Params ( ) ;
} ;
// out_cn - channels count in output result (can be 3 or 4)
// 4-channels require more memory, but a bit faster
explicit FGDStatModel ( int out_cn = 3 ) ;
explicit FGDStatModel ( const cv : : gpu : : GpuMat & firstFrame , const Params & params = Params ( ) , int out_cn = 3 ) ;
~ FGDStatModel ( ) ;
void create ( const cv : : gpu : : GpuMat & firstFrame , const Params & params = Params ( ) ) ;
void release ( ) ;
int update ( const cv : : gpu : : GpuMat & curFrame ) ;
//8UC3 or 8UC4 reference background image
cv : : gpu : : GpuMat background ;
//8UC1 foreground image
cv : : gpu : : GpuMat foreground ;
std : : vector < std : : vector < cv : : Point > > foreground_regions ;
private :
FGDStatModel ( const FGDStatModel & ) ;
FGDStatModel & operator = ( const FGDStatModel & ) ;
class Impl ;
std : : auto_ptr < Impl > impl_ ;
} ;
/*!
Gaussian Mixture - based Backbround / Foreground Segmentation Algorithm
The class implements the following algorithm :
" An improved adaptive background mixture model for real-time tracking with shadow detection "
P . KadewTraKuPong and R . Bowden ,
Proc . 2 nd European Workshp on Advanced Video - Based Surveillance Systems , 2001. "
http : //personal.ee.surrey.ac.uk/Personal/R.Bowden/publications/avbs01/avbs01.pdf
*/
class CV_EXPORTS MOG_GPU
{
public :
//! the default constructor
MOG_GPU ( int nmixtures = - 1 ) ;
//! re-initiaization method
void initialize ( Size frameSize , int frameType ) ;
//! the update operator
void operator ( ) ( const GpuMat & frame , GpuMat & fgmask , float learningRate = 0.0f , Stream & stream = Stream : : Null ( ) ) ;
//! computes a background image which are the mean of all background gaussians
void getBackgroundImage ( GpuMat & backgroundImage , Stream & stream = Stream : : Null ( ) ) const ;
//! releases all inner buffers
void release ( ) ;
int history ;
float varThreshold ;
float backgroundRatio ;
float noiseSigma ;
private :
int nmixtures_ ;
Size frameSize_ ;
int frameType_ ;
int nframes_ ;
GpuMat weight_ ;
GpuMat sortKey_ ;
GpuMat mean_ ;
GpuMat var_ ;
} ;
/*!
The class implements the following algorithm :
" Improved adaptive Gausian mixture model for background subtraction "
Z . Zivkovic
International Conference Pattern Recognition , UK , August , 2004.
http : //www.zoranz.net/Publications/zivkovic2004ICPR.pdf
*/
class CV_EXPORTS MOG2_GPU
{
public :
//! the default constructor
MOG2_GPU ( int nmixtures = - 1 ) ;
//! re-initiaization method
void initialize ( Size frameSize , int frameType ) ;
//! the update operator
void operator ( ) ( const GpuMat & frame , GpuMat & fgmask , float learningRate = - 1.0f , Stream & stream = Stream : : Null ( ) ) ;
//! computes a background image which are the mean of all background gaussians
void getBackgroundImage ( GpuMat & backgroundImage , Stream & stream = Stream : : Null ( ) ) const ;
//! releases all inner buffers
void release ( ) ;
// parameters
// you should call initialize after parameters changes
int history ;
//! here it is the maximum allowed number of mixture components.
//! Actual number is determined dynamically per pixel
float varThreshold ;
// threshold on the squared Mahalanobis distance to decide if it is well described
// by the background model or not. Related to Cthr from the paper.
// This does not influence the update of the background. A typical value could be 4 sigma
// and that is varThreshold=4*4=16; Corresponds to Tb in the paper.
/////////////////////////
// less important parameters - things you might change but be carefull
////////////////////////
float backgroundRatio ;
// corresponds to fTB=1-cf from the paper
// TB - threshold when the component becomes significant enough to be included into
// the background model. It is the TB=1-cf from the paper. So I use cf=0.1 => TB=0.
// For alpha=0.001 it means that the mode should exist for approximately 105 frames before
// it is considered foreground
// float noiseSigma;
float varThresholdGen ;
//correspondts to Tg - threshold on the squared Mahalan. dist. to decide
//when a sample is close to the existing components. If it is not close
//to any a new component will be generated. I use 3 sigma => Tg=3*3=9.
//Smaller Tg leads to more generated components and higher Tg might make
//lead to small number of components but they can grow too large
float fVarInit ;
float fVarMin ;
float fVarMax ;
//initial variance for the newly generated components.
//It will will influence the speed of adaptation. A good guess should be made.
//A simple way is to estimate the typical standard deviation from the images.
//I used here 10 as a reasonable value
// min and max can be used to further control the variance
float fCT ; //CT - complexity reduction prior
//this is related to the number of samples needed to accept that a component
//actually exists. We use CT=0.05 of all the samples. By setting CT=0 you get
//the standard Stauffer&Grimson algorithm (maybe not exact but very similar)
//shadow detection parameters
bool bShadowDetection ; //default 1 - do shadow detection
unsigned char nShadowDetection ; //do shadow detection - insert this value as the detection result - 127 default value
float fTau ;
// Tau - shadow threshold. The shadow is detected if the pixel is darker
//version of the background. Tau is a threshold on how much darker the shadow can be.
//Tau= 0.5 means that if pixel is more than 2 times darker then it is not shadow
//See: Prati,Mikic,Trivedi,Cucchiarra,"Detecting Moving Shadows...",IEEE PAMI,2003.
private :
int nmixtures_ ;
Size frameSize_ ;
int frameType_ ;
int nframes_ ;
GpuMat weight_ ;
GpuMat variance_ ;
GpuMat mean_ ;
GpuMat bgmodelUsedModes_ ; //keep track of number of modes per pixel
} ;
/**
* Background Subtractor module . Takes a series of images and returns a sequence of mask ( 8U C1 )
* images of the same size , where 255 indicates Foreground and 0 represents Background .
* This class implements an algorithm described in " Visual Tracking of Human Visitors under
* Variable - Lighting Conditions for a Responsive Audio Art Installation , " A. Godbehere,
* A . Matsukawa , K . Goldberg , American Control Conference , Montreal , June 2012.
*/
class CV_EXPORTS GMG_GPU
{
public :
GMG_GPU ( ) ;
/**
* Validate parameters and set up data structures for appropriate frame size .
* @ param frameSize Input frame size
* @ param min Minimum value taken on by pixels in image sequence . Usually 0
* @ param max Maximum value taken on by pixels in image sequence . e . g . 1.0 or 255
*/
void initialize ( Size frameSize , float min = 0.0f , float max = 255.0f ) ;
/**
* Performs single - frame background subtraction and builds up a statistical background image
* model .
* @ param frame Input frame
* @ param fgmask Output mask image representing foreground and background pixels
* @ param stream Stream for the asynchronous version
*/
void operator ( ) ( const GpuMat & frame , GpuMat & fgmask , float learningRate = - 1.0f , Stream & stream = Stream : : Null ( ) ) ;
//! Releases all inner buffers
void release ( ) ;
//! Total number of distinct colors to maintain in histogram.
int maxFeatures ;
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
float learningRate ;
//! Number of frames of video to use to initialize histograms.
int numInitializationFrames ;
//! Number of discrete levels in each channel to be used in histograms.
int quantizationLevels ;
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
float backgroundPrior ;
//! Value above which pixel is determined to be FG.
float decisionThreshold ;
//! Smoothing radius, in pixels, for cleaning up FG image.
int smoothingRadius ;
//! Perform background model update.
bool updateBackgroundModel ;
private :
float maxVal_ , minVal_ ;
Size frameSize_ ;
int frameNum_ ;
GpuMat nfeatures_ ;
GpuMat colors_ ;
GpuMat weights_ ;
Ptr < FilterEngine_GPU > boxFilter_ ;
GpuMat buf_ ;
} ;
////////////////////////////////// Video Encoding //////////////////////////////////
// Works only under Windows
// Supports olny H264 video codec and AVI files
class CV_EXPORTS VideoWriter_GPU
{
public :
struct EncoderParams ;
// Callbacks for video encoder, use it if you want to work with raw video stream
class EncoderCallBack ;
enum SurfaceFormat
{
SF_UYVY = 0 ,
SF_YUY2 ,
SF_YV12 ,
SF_NV12 ,
SF_IYUV ,
SF_BGR ,
SF_GRAY = SF_BGR
} ;
VideoWriter_GPU ( ) ;
VideoWriter_GPU ( const String & fileName , cv : : Size frameSize , double fps , SurfaceFormat format = SF_BGR ) ;
VideoWriter_GPU ( const String & fileName , cv : : Size frameSize , double fps , const EncoderParams & params , SurfaceFormat format = SF_BGR ) ;
VideoWriter_GPU ( const cv : : Ptr < EncoderCallBack > & encoderCallback , cv : : Size frameSize , double fps , SurfaceFormat format = SF_BGR ) ;
VideoWriter_GPU ( const cv : : Ptr < EncoderCallBack > & encoderCallback , cv : : Size frameSize , double fps , const EncoderParams & params , SurfaceFormat format = SF_BGR ) ;
~ VideoWriter_GPU ( ) ;
// all methods throws cv::Exception if error occurs
void open ( const String & fileName , cv : : Size frameSize , double fps , SurfaceFormat format = SF_BGR ) ;
void open ( const String & fileName , cv : : Size frameSize , double fps , const EncoderParams & params , SurfaceFormat format = SF_BGR ) ;
void open ( const cv : : Ptr < EncoderCallBack > & encoderCallback , cv : : Size frameSize , double fps , SurfaceFormat format = SF_BGR ) ;
void open ( const cv : : Ptr < EncoderCallBack > & encoderCallback , cv : : Size frameSize , double fps , const EncoderParams & params , SurfaceFormat format = SF_BGR ) ;
bool isOpened ( ) const ;
void close ( ) ;
void write ( const cv : : gpu : : GpuMat & image , bool lastFrame = false ) ;
struct CV_EXPORTS EncoderParams
{
int P_Interval ; // NVVE_P_INTERVAL,
int IDR_Period ; // NVVE_IDR_PERIOD,
int DynamicGOP ; // NVVE_DYNAMIC_GOP,
int RCType ; // NVVE_RC_TYPE,
int AvgBitrate ; // NVVE_AVG_BITRATE,
int PeakBitrate ; // NVVE_PEAK_BITRATE,
int QP_Level_Intra ; // NVVE_QP_LEVEL_INTRA,
int QP_Level_InterP ; // NVVE_QP_LEVEL_INTER_P,
int QP_Level_InterB ; // NVVE_QP_LEVEL_INTER_B,
int DeblockMode ; // NVVE_DEBLOCK_MODE,
int ProfileLevel ; // NVVE_PROFILE_LEVEL,
int ForceIntra ; // NVVE_FORCE_INTRA,
int ForceIDR ; // NVVE_FORCE_IDR,
int ClearStat ; // NVVE_CLEAR_STAT,
int DIMode ; // NVVE_SET_DEINTERLACE,
int Presets ; // NVVE_PRESETS,
int DisableCabac ; // NVVE_DISABLE_CABAC,
int NaluFramingType ; // NVVE_CONFIGURE_NALU_FRAMING_TYPE
int DisableSPSPPS ; // NVVE_DISABLE_SPS_PPS
EncoderParams ( ) ;
explicit EncoderParams ( const String & configFile ) ;
void load ( const String & configFile ) ;
void save ( const String & configFile ) const ;
} ;
EncoderParams getParams ( ) const ;
class CV_EXPORTS EncoderCallBack
{
public :
enum PicType
{
IFRAME = 1 ,
PFRAME = 2 ,
BFRAME = 3
} ;
virtual ~ EncoderCallBack ( ) { }
// callback function to signal the start of bitstream that is to be encoded
// must return pointer to buffer
virtual uchar * acquireBitStream ( int * bufferSize ) = 0 ;
// callback function to signal that the encoded bitstream is ready to be written to file
virtual void releaseBitStream ( unsigned char * data , int size ) = 0 ;
// callback function to signal that the encoding operation on the frame has started
virtual void onBeginFrame ( int frameNumber , PicType picType ) = 0 ;
// callback function signals that the encoding operation on the frame has finished
virtual void onEndFrame ( int frameNumber , PicType picType ) = 0 ;
} ;
private :
VideoWriter_GPU ( const VideoWriter_GPU & ) ;
VideoWriter_GPU & operator = ( const VideoWriter_GPU & ) ;
class Impl ;
std : : auto_ptr < Impl > impl_ ;
} ;
////////////////////////////////// Video Decoding //////////////////////////////////////////
namespace detail
{
class FrameQueue ;
class VideoParser ;
}
class CV_EXPORTS VideoReader_GPU
{
public :
enum Codec
{
MPEG1 = 0 ,
MPEG2 ,
MPEG4 ,
VC1 ,
H264 ,
JPEG ,
H264_SVC ,
H264_MVC ,
Uncompressed_YUV420 = ( ( ' I ' < < 24 ) | ( ' Y ' < < 16 ) | ( ' U ' < < 8 ) | ( ' V ' ) ) , // Y,U,V (4:2:0)
Uncompressed_YV12 = ( ( ' Y ' < < 24 ) | ( ' V ' < < 16 ) | ( ' 1 ' < < 8 ) | ( ' 2 ' ) ) , // Y,V,U (4:2:0)
Uncompressed_NV12 = ( ( ' N ' < < 24 ) | ( ' V ' < < 16 ) | ( ' 1 ' < < 8 ) | ( ' 2 ' ) ) , // Y,UV (4:2:0)
Uncompressed_YUYV = ( ( ' Y ' < < 24 ) | ( ' U ' < < 16 ) | ( ' Y ' < < 8 ) | ( ' V ' ) ) , // YUYV/YUY2 (4:2:2)
Uncompressed_UYVY = ( ( ' U ' < < 24 ) | ( ' Y ' < < 16 ) | ( ' V ' < < 8 ) | ( ' Y ' ) ) , // UYVY (4:2:2)
} ;
enum ChromaFormat
{
Monochrome = 0 ,
YUV420 ,
YUV422 ,
YUV444 ,
} ;
struct FormatInfo
{
Codec codec ;
ChromaFormat chromaFormat ;
int width ;
int height ;
} ;
class VideoSource ;
VideoReader_GPU ( ) ;
explicit VideoReader_GPU ( const String & filename ) ;
explicit VideoReader_GPU ( const cv : : Ptr < VideoSource > & source ) ;
~ VideoReader_GPU ( ) ;
void open ( const String & filename ) ;
void open ( const cv : : Ptr < VideoSource > & source ) ;
bool isOpened ( ) const ;
void close ( ) ;
bool read ( GpuMat & image ) ;
FormatInfo format ( ) const ;
void dumpFormat ( std : : ostream & st ) ;
class CV_EXPORTS VideoSource
{
public :
VideoSource ( ) : frameQueue_ ( 0 ) , videoParser_ ( 0 ) { }
virtual ~ VideoSource ( ) { }
virtual FormatInfo format ( ) const = 0 ;
virtual void start ( ) = 0 ;
virtual void stop ( ) = 0 ;
virtual bool isStarted ( ) const = 0 ;
virtual bool hasError ( ) const = 0 ;
void setFrameQueue ( detail : : FrameQueue * frameQueue ) { frameQueue_ = frameQueue ; }
void setVideoParser ( detail : : VideoParser * videoParser ) { videoParser_ = videoParser ; }
protected :
bool parseVideoData ( const uchar * data , size_t size , bool endOfStream = false ) ;
private :
VideoSource ( const VideoSource & ) ;
VideoSource & operator = ( const VideoSource & ) ;
detail : : FrameQueue * frameQueue_ ;
detail : : VideoParser * videoParser_ ;
} ;
private :
VideoReader_GPU ( const VideoReader_GPU & ) ;
VideoReader_GPU & operator = ( const VideoReader_GPU & ) ;
class Impl ;
std : : auto_ptr < Impl > impl_ ;
} ;
//! removes points (CV_32FC2, single row matrix) with zero mask value
CV_EXPORTS void compactPoints ( GpuMat & points0 , GpuMat & points1 , const GpuMat & mask ) ;
CV_EXPORTS void calcWobbleSuppressionMaps (
int left , int idx , int right , Size size , const Mat & ml , const Mat & mr ,
GpuMat & mapx , GpuMat & mapy ) ;
} // namespace gpu
} // namespace cv
# endif /* __OPENCV_GPU_HPP__ */