|
|
|
// This file is part of OpenCV project.
|
|
|
|
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
|
|
|
// of this distribution and at http://opencv.org/license.html.
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
|
|
|
|
using cv::ml::TrainData;
|
|
|
|
using cv::ml::EM;
|
|
|
|
using cv::ml::KNearest;
|
|
|
|
|
|
|
|
TEST(ML_KNearest, accuracy)
|
|
|
|
{
|
|
|
|
int sizesArr[] = { 500, 700, 800 };
|
|
|
|
int pointsCount = sizesArr[0]+ sizesArr[1] + sizesArr[2];
|
|
|
|
|
|
|
|
Mat trainData( pointsCount, 2, CV_32FC1 ), trainLabels;
|
|
|
|
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
|
|
|
|
Mat means;
|
|
|
|
vector<Mat> covs;
|
|
|
|
defaultDistribs( means, covs );
|
|
|
|
generateData( trainData, trainLabels, sizes, means, covs, CV_32FC1, CV_32FC1 );
|
|
|
|
|
|
|
|
Mat testData( pointsCount, 2, CV_32FC1 );
|
|
|
|
Mat testLabels;
|
|
|
|
generateData( testData, testLabels, sizes, means, covs, CV_32FC1, CV_32FC1 );
|
|
|
|
|
|
|
|
{
|
|
|
|
SCOPED_TRACE("Default");
|
|
|
|
Mat bestLabels;
|
|
|
|
float err = 1000;
|
|
|
|
Ptr<KNearest> knn = KNearest::create();
|
|
|
|
knn->train(trainData, ml::ROW_SAMPLE, trainLabels);
|
|
|
|
knn->findNearest(testData, 4, bestLabels);
|
|
|
|
EXPECT_TRUE(calcErr( bestLabels, testLabels, sizes, err, true ));
|
|
|
|
EXPECT_LE(err, 0.01f);
|
|
|
|
}
|
|
|
|
{
|
|
|
|
SCOPED_TRACE("KDTree");
|
|
|
|
Mat neighborIndexes;
|
|
|
|
float err = 1000;
|
|
|
|
Ptr<KNearest> knn = KNearest::create();
|
|
|
|
knn->setAlgorithmType(KNearest::KDTREE);
|
|
|
|
knn->train(trainData, ml::ROW_SAMPLE, trainLabels);
|
|
|
|
knn->findNearest(testData, 4, neighborIndexes);
|
|
|
|
Mat bestLabels;
|
|
|
|
// The output of the KDTree are the neighbor indexes, not actual class labels
|
|
|
|
// so we need to do some extra work to get actual predictions
|
|
|
|
for(int row_num = 0; row_num < neighborIndexes.rows; ++row_num){
|
|
|
|
vector<float> labels;
|
|
|
|
for(int index = 0; index < neighborIndexes.row(row_num).cols; ++index) {
|
|
|
|
labels.push_back(trainLabels.at<float>(neighborIndexes.row(row_num).at<int>(0, index) , 0));
|
|
|
|
}
|
|
|
|
// computing the mode of the output class predictions to determine overall prediction
|
|
|
|
std::vector<int> histogram(3,0);
|
|
|
|
for( int i=0; i<3; ++i )
|
|
|
|
++histogram[ static_cast<int>(labels[i]) ];
|
|
|
|
int bestLabel = static_cast<int>(std::max_element( histogram.begin(), histogram.end() ) - histogram.begin());
|
|
|
|
bestLabels.push_back(bestLabel);
|
|
|
|
}
|
|
|
|
bestLabels.convertTo(bestLabels, testLabels.type());
|
|
|
|
EXPECT_TRUE(calcErr( bestLabels, testLabels, sizes, err, true ));
|
|
|
|
EXPECT_LE(err, 0.01f);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ML_KNearest, regression_12347)
|
|
|
|
{
|
|
|
|
Mat xTrainData = (Mat_<float>(5,2) << 1, 1.1, 1.1, 1, 2, 2, 2.1, 2, 2.1, 2.1);
|
|
|
|
Mat yTrainLabels = (Mat_<float>(5,1) << 1, 1, 2, 2, 2);
|
|
|
|
Ptr<KNearest> knn = KNearest::create();
|
|
|
|
knn->train(xTrainData, ml::ROW_SAMPLE, yTrainLabels);
|
|
|
|
|
|
|
|
Mat xTestData = (Mat_<float>(2,2) << 1.1, 1.1, 2, 2.2);
|
|
|
|
Mat zBestLabels, neighbours, dist;
|
|
|
|
// check output shapes:
|
|
|
|
int K = 16, Kexp = std::min(K, xTrainData.rows);
|
|
|
|
knn->findNearest(xTestData, K, zBestLabels, neighbours, dist);
|
|
|
|
EXPECT_EQ(xTestData.rows, zBestLabels.rows);
|
|
|
|
EXPECT_EQ(neighbours.cols, Kexp);
|
|
|
|
EXPECT_EQ(dist.cols, Kexp);
|
|
|
|
// see if the result is still correct:
|
|
|
|
K = 2;
|
|
|
|
knn->findNearest(xTestData, K, zBestLabels, neighbours, dist);
|
|
|
|
EXPECT_EQ(1, zBestLabels.at<float>(0,0));
|
|
|
|
EXPECT_EQ(2, zBestLabels.at<float>(1,0));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ML_KNearest, bug_11877)
|
|
|
|
{
|
|
|
|
Mat trainData = (Mat_<float>(5,2) << 3, 3, 3, 3, 4, 4, 4, 4, 4, 4);
|
|
|
|
Mat trainLabels = (Mat_<float>(5,1) << 0, 0, 1, 1, 1);
|
|
|
|
|
|
|
|
Ptr<KNearest> knnKdt = KNearest::create();
|
|
|
|
knnKdt->setAlgorithmType(KNearest::KDTREE);
|
|
|
|
knnKdt->setIsClassifier(true);
|
|
|
|
|
|
|
|
knnKdt->train(trainData, ml::ROW_SAMPLE, trainLabels);
|
|
|
|
|
|
|
|
Mat testData = (Mat_<float>(2,2) << 3.1, 3.1, 4, 4.1);
|
|
|
|
Mat testLabels = (Mat_<int>(2,1) << 0, 1);
|
|
|
|
Mat result;
|
|
|
|
|
|
|
|
knnKdt->findNearest(testData, 1, result);
|
|
|
|
|
|
|
|
EXPECT_EQ(1, int(result.at<int>(0, 0)));
|
|
|
|
EXPECT_EQ(2, int(result.at<int>(1, 0)));
|
|
|
|
EXPECT_EQ(0, trainLabels.at<int>(result.at<int>(0, 0), 0));
|
|
|
|
}
|
|
|
|
|
|
|
|
}} // namespace
|