import argparse
import numpy as np
import cv2 as cv
def str2bool ( v ) :
if v . lower ( ) in [ ' on ' , ' yes ' , ' true ' , ' y ' , ' t ' ] :
return True
elif v . lower ( ) in [ ' off ' , ' no ' , ' false ' , ' n ' , ' f ' ] :
return False
else :
raise NotImplementedError
parser = argparse . ArgumentParser ( )
parser . add_argument ( ' --image1 ' , ' -i1 ' , type = str , help = ' Path to the input image1. Omit for detecting on default camera. ' )
parser . add_argument ( ' --image2 ' , ' -i2 ' , type = str , help = ' Path to the input image2. When image1 and image2 parameters given then the program try to find a face on both images and runs face recognition algorithm. ' )
parser . add_argument ( ' --video ' , ' -v ' , type = str , help = ' Path to the input video. ' )
parser . add_argument ( ' --scale ' , ' -sc ' , type = float , default = 1.0 , help = ' Scale factor used to resize input video frames. ' )
parser . add_argument ( ' --face_detection_model ' , ' -fd ' , type = str , default = ' face_detection_yunet_2021dec.onnx ' , help = ' Path to the face detection model. Download the model at https://github.com/opencv/opencv_zoo/tree/master/models/face_detection_yunet ' )
parser . add_argument ( ' --face_recognition_model ' , ' -fr ' , type = str , default = ' face_recognition_sface_2021dec.onnx ' , help = ' Path to the face recognition model. Download the model at https://github.com/opencv/opencv_zoo/tree/master/models/face_recognition_sface ' )
parser . add_argument ( ' --score_threshold ' , type = float , default = 0.9 , help = ' Filtering out faces of score < score_threshold. ' )
parser . add_argument ( ' --nms_threshold ' , type = float , default = 0.3 , help = ' Suppress bounding boxes of iou >= nms_threshold. ' )
parser . add_argument ( ' --top_k ' , type = int , default = 5000 , help = ' Keep top_k bounding boxes before NMS. ' )
parser . add_argument ( ' --save ' , ' -s ' , type = str2bool , default = False , help = ' Set true to save results. This flag is invalid when using camera. ' )
args = parser . parse_args ( )
def visualize ( input , faces , fps , thickness = 2 ) :
if faces [ 1 ] is not None :
for idx , face in enumerate ( faces [ 1 ] ) :
print ( ' Face {} , top-left coordinates: ( {:.0f} , {:.0f} ), box width: {:.0f} , box height {:.0f} , score: {:.2f} ' . format ( idx , face [ 0 ] , face [ 1 ] , face [ 2 ] , face [ 3 ] , face [ - 1 ] ) )
coords = face [ : - 1 ] . astype ( np . int32 )
cv . rectangle ( input , ( coords [ 0 ] , coords [ 1 ] ) , ( coords [ 0 ] + coords [ 2 ] , coords [ 1 ] + coords [ 3 ] ) , ( 0 , 255 , 0 ) , thickness )
cv . circle ( input , ( coords [ 4 ] , coords [ 5 ] ) , 2 , ( 255 , 0 , 0 ) , thickness )
cv . circle ( input , ( coords [ 6 ] , coords [ 7 ] ) , 2 , ( 0 , 0 , 255 ) , thickness )
cv . circle ( input , ( coords [ 8 ] , coords [ 9 ] ) , 2 , ( 0 , 255 , 0 ) , thickness )
cv . circle ( input , ( coords [ 10 ] , coords [ 11 ] ) , 2 , ( 255 , 0 , 255 ) , thickness )
cv . circle ( input , ( coords [ 12 ] , coords [ 13 ] ) , 2 , ( 0 , 255 , 255 ) , thickness )
cv . putText ( input , ' FPS: {:.2f} ' . format ( fps ) , ( 1 , 16 ) , cv . FONT_HERSHEY_SIMPLEX , 0.5 , ( 0 , 255 , 0 ) , 2 )
if __name__ == ' __main__ ' :
## [initialize_FaceDetectorYN]
detector = cv . FaceDetectorYN . create (
args . face_detection_model ,
" " ,
( 320 , 320 ) ,
args . score_threshold ,
args . nms_threshold ,
args . top_k
)
## [initialize_FaceDetectorYN]
tm = cv . TickMeter ( )
# If input is an image
if args . image1 is not None :
img1 = cv . imread ( cv . samples . findFile ( args . image1 ) )
img1Width = int ( img1 . shape [ 1 ] * args . scale )
img1Height = int ( img1 . shape [ 0 ] * args . scale )
img1 = cv . resize ( img1 , ( img1Width , img1Height ) )
tm . start ( )
## [inference]
# Set input size before inference
detector . setInputSize ( ( img1Width , img1Height ) )
faces1 = detector . detect ( img1 )
## [inference]
tm . stop ( )
assert faces1 [ 1 ] is not None , ' Cannot find a face in {} ' . format ( args . image1 )
# Draw results on the input image
visualize ( img1 , faces1 , tm . getFPS ( ) )
# Save results if save is true
if args . save :
print ( ' Results saved to result.jpg \n ' )
cv . imwrite ( ' result.jpg ' , img1 )
# Visualize results in a new window
cv . imshow ( " image1 " , img1 )
if args . image2 is not None :
img2 = cv . imread ( cv . samples . findFile ( args . image2 ) )
tm . reset ( )
tm . start ( )
detector . setInputSize ( ( img2 . shape [ 1 ] , img2 . shape [ 0 ] ) )
faces2 = detector . detect ( img2 )
tm . stop ( )
assert faces2 [ 1 ] is not None , ' Cannot find a face in {} ' . format ( args . image2 )
visualize ( img2 , faces2 , tm . getFPS ( ) )
cv . imshow ( " image2 " , img2 )
## [initialize_FaceRecognizerSF]
recognizer = cv . FaceRecognizerSF . create (
args . face_recognition_model , " " )
## [initialize_FaceRecognizerSF]
## [facerecognizer]
# Align faces
face1_align = recognizer . alignCrop ( img1 , faces1 [ 1 ] [ 0 ] )
face2_align = recognizer . alignCrop ( img2 , faces2 [ 1 ] [ 0 ] )
# Extract features
face1_feature = recognizer . feature ( face1_align )
face2_feature = recognizer . feature ( face2_align )
## [facerecognizer]
cosine_similarity_threshold = 0.363
l2_similarity_threshold = 1.128
## [match]
cosine_score = recognizer . match ( face1_feature , face2_feature , cv . FaceRecognizerSF_FR_COSINE )
l2_score = recognizer . match ( face1_feature , face2_feature , cv . FaceRecognizerSF_FR_NORM_L2 )
## [match]
msg = ' different identities '
if cosine_score > = cosine_similarity_threshold :
msg = ' the same identity '
print ( ' They have {} . Cosine Similarity: {} , threshold: {} (higher value means higher similarity, max 1.0). ' . format ( msg , cosine_score , cosine_similarity_threshold ) )
msg = ' different identities '
if l2_score < = l2_similarity_threshold :
msg = ' the same identity '
print ( ' They have {} . NormL2 Distance: {} , threshold: {} (lower value means higher similarity, min 0.0). ' . format ( msg , l2_score , l2_similarity_threshold ) )
cv . waitKey ( 0 )
else : # Omit input to call default camera
if args . video is not None :
deviceId = args . video
else :
deviceId = 0
cap = cv . VideoCapture ( deviceId )
frameWidth = int ( cap . get ( cv . CAP_PROP_FRAME_WIDTH ) * args . scale )
frameHeight = int ( cap . get ( cv . CAP_PROP_FRAME_HEIGHT ) * args . scale )
detector . setInputSize ( [ frameWidth , frameHeight ] )
while cv . waitKey ( 1 ) < 0 :
hasFrame , frame = cap . read ( )
if not hasFrame :
print ( ' No frames grabbed! ' )
break
frame = cv . resize ( frame , ( frameWidth , frameHeight ) )
# Inference
tm . start ( )
faces = detector . detect ( frame ) # faces is a tuple
tm . stop ( )
# Draw results on the input image
visualize ( frame , faces , tm . getFPS ( ) )
# Visualize results
cv . imshow ( ' Live ' , frame )
cv . destroyAllWindows ( )