|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#ifndef __OPENCV_CONTRIB_HPP__
|
|
|
|
#define __OPENCV_CONTRIB_HPP__
|
|
|
|
|
|
|
|
#include "opencv2/core.hpp"
|
|
|
|
#include "opencv2/imgproc.hpp"
|
|
|
|
#include "opencv2/features2d.hpp"
|
|
|
|
#include "opencv2/objdetect.hpp"
|
|
|
|
|
|
|
|
#include <ostream>
|
|
|
|
|
|
|
|
#ifdef __cplusplus
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* Adaptive Skin Detector *
|
|
|
|
\****************************************************************************************/
|
|
|
|
|
|
|
|
class CV_EXPORTS CvAdaptiveSkinDetector
|
|
|
|
{
|
|
|
|
private:
|
|
|
|
enum {
|
|
|
|
GSD_HUE_LT = 3,
|
|
|
|
GSD_HUE_UT = 33,
|
|
|
|
GSD_INTENSITY_LT = 15,
|
|
|
|
GSD_INTENSITY_UT = 250
|
|
|
|
};
|
|
|
|
|
|
|
|
class CV_EXPORTS Histogram
|
|
|
|
{
|
|
|
|
private:
|
|
|
|
enum {
|
|
|
|
HistogramSize = (GSD_HUE_UT - GSD_HUE_LT + 1)
|
|
|
|
};
|
|
|
|
|
|
|
|
protected:
|
|
|
|
int findCoverageIndex(double surfaceToCover, int defaultValue = 0);
|
|
|
|
|
|
|
|
public:
|
|
|
|
CvHistogram *fHistogram;
|
|
|
|
Histogram();
|
|
|
|
virtual ~Histogram();
|
|
|
|
|
|
|
|
void findCurveThresholds(int &x1, int &x2, double percent = 0.05);
|
|
|
|
void mergeWith(Histogram *source, double weight);
|
|
|
|
};
|
|
|
|
|
|
|
|
int nStartCounter, nFrameCount, nSkinHueLowerBound, nSkinHueUpperBound, nMorphingMethod, nSamplingDivider;
|
|
|
|
double fHistogramMergeFactor, fHuePercentCovered;
|
|
|
|
Histogram histogramHueMotion, skinHueHistogram;
|
|
|
|
IplImage *imgHueFrame, *imgSaturationFrame, *imgLastGrayFrame, *imgMotionFrame, *imgFilteredFrame;
|
|
|
|
IplImage *imgShrinked, *imgTemp, *imgGrayFrame, *imgHSVFrame;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
void initData(IplImage *src, int widthDivider, int heightDivider);
|
|
|
|
void adaptiveFilter();
|
|
|
|
|
|
|
|
public:
|
|
|
|
|
|
|
|
enum {
|
|
|
|
MORPHING_METHOD_NONE = 0,
|
|
|
|
MORPHING_METHOD_ERODE = 1,
|
|
|
|
MORPHING_METHOD_ERODE_ERODE = 2,
|
|
|
|
MORPHING_METHOD_ERODE_DILATE = 3
|
|
|
|
};
|
|
|
|
|
|
|
|
CvAdaptiveSkinDetector(int samplingDivider = 1, int morphingMethod = MORPHING_METHOD_NONE);
|
|
|
|
virtual ~CvAdaptiveSkinDetector();
|
|
|
|
|
|
|
|
virtual void process(IplImage *inputBGRImage, IplImage *outputHueMask);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
/****************************************************************************************\
|
|
|
|
* Fuzzy MeanShift Tracker *
|
|
|
|
\****************************************************************************************/
|
|
|
|
|
|
|
|
class CV_EXPORTS CvFuzzyPoint {
|
|
|
|
public:
|
|
|
|
double x, y, value;
|
|
|
|
|
|
|
|
CvFuzzyPoint(double _x, double _y);
|
|
|
|
};
|
|
|
|
|
|
|
|
class CV_EXPORTS CvFuzzyCurve {
|
|
|
|
private:
|
|
|
|
std::vector<CvFuzzyPoint> points;
|
|
|
|
double value, centre;
|
|
|
|
|
|
|
|
bool between(double x, double x1, double x2);
|
|
|
|
|
|
|
|
public:
|
|
|
|
CvFuzzyCurve();
|
|
|
|
~CvFuzzyCurve();
|
|
|
|
|
|
|
|
void setCentre(double _centre);
|
|
|
|
double getCentre();
|
|
|
|
void clear();
|
|
|
|
void addPoint(double x, double y);
|
|
|
|
double calcValue(double param);
|
|
|
|
double getValue();
|
|
|
|
void setValue(double _value);
|
|
|
|
};
|
|
|
|
|
|
|
|
class CV_EXPORTS CvFuzzyFunction {
|
|
|
|
public:
|
|
|
|
std::vector<CvFuzzyCurve> curves;
|
|
|
|
|
|
|
|
CvFuzzyFunction();
|
|
|
|
~CvFuzzyFunction();
|
|
|
|
void addCurve(CvFuzzyCurve *curve, double value = 0);
|
|
|
|
void resetValues();
|
|
|
|
double calcValue();
|
|
|
|
CvFuzzyCurve *newCurve();
|
|
|
|
};
|
|
|
|
|
|
|
|
class CV_EXPORTS CvFuzzyRule {
|
|
|
|
private:
|
|
|
|
CvFuzzyCurve *fuzzyInput1, *fuzzyInput2;
|
|
|
|
CvFuzzyCurve *fuzzyOutput;
|
|
|
|
public:
|
|
|
|
CvFuzzyRule();
|
|
|
|
~CvFuzzyRule();
|
|
|
|
void setRule(CvFuzzyCurve *c1, CvFuzzyCurve *c2, CvFuzzyCurve *o1);
|
|
|
|
double calcValue(double param1, double param2);
|
|
|
|
CvFuzzyCurve *getOutputCurve();
|
|
|
|
};
|
|
|
|
|
|
|
|
class CV_EXPORTS CvFuzzyController {
|
|
|
|
private:
|
|
|
|
std::vector<CvFuzzyRule*> rules;
|
|
|
|
public:
|
|
|
|
CvFuzzyController();
|
|
|
|
~CvFuzzyController();
|
|
|
|
void addRule(CvFuzzyCurve *c1, CvFuzzyCurve *c2, CvFuzzyCurve *o1);
|
|
|
|
double calcOutput(double param1, double param2);
|
|
|
|
};
|
|
|
|
|
|
|
|
class CV_EXPORTS CvFuzzyMeanShiftTracker
|
|
|
|
{
|
|
|
|
private:
|
|
|
|
class FuzzyResizer
|
|
|
|
{
|
|
|
|
private:
|
|
|
|
CvFuzzyFunction iInput, iOutput;
|
|
|
|
CvFuzzyController fuzzyController;
|
|
|
|
public:
|
|
|
|
FuzzyResizer();
|
|
|
|
int calcOutput(double edgeDensity, double density);
|
|
|
|
};
|
|
|
|
|
|
|
|
class SearchWindow
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
FuzzyResizer *fuzzyResizer;
|
|
|
|
int x, y;
|
|
|
|
int width, height, maxWidth, maxHeight, ellipseHeight, ellipseWidth;
|
|
|
|
int ldx, ldy, ldw, ldh, numShifts, numIters;
|
|
|
|
int xGc, yGc;
|
|
|
|
long m00, m01, m10, m11, m02, m20;
|
|
|
|
double ellipseAngle;
|
|
|
|
double density;
|
|
|
|
unsigned int depthLow, depthHigh;
|
|
|
|
int verticalEdgeLeft, verticalEdgeRight, horizontalEdgeTop, horizontalEdgeBottom;
|
|
|
|
|
|
|
|
SearchWindow();
|
|
|
|
~SearchWindow();
|
|
|
|
void setSize(int _x, int _y, int _width, int _height);
|
|
|
|
void initDepthValues(IplImage *maskImage, IplImage *depthMap);
|
|
|
|
bool shift();
|
|
|
|
void extractInfo(IplImage *maskImage, IplImage *depthMap, bool initDepth);
|
|
|
|
void getResizeAttribsEdgeDensityLinear(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh);
|
|
|
|
void getResizeAttribsInnerDensity(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh);
|
|
|
|
void getResizeAttribsEdgeDensityFuzzy(int &resizeDx, int &resizeDy, int &resizeDw, int &resizeDh);
|
|
|
|
bool meanShift(IplImage *maskImage, IplImage *depthMap, int maxIteration, bool initDepth);
|
|
|
|
};
|
|
|
|
|
|
|
|
public:
|
|
|
|
enum TrackingState
|
|
|
|
{
|
|
|
|
tsNone = 0,
|
|
|
|
tsSearching = 1,
|
|
|
|
tsTracking = 2,
|
|
|
|
tsSetWindow = 3,
|
|
|
|
tsDisabled = 10
|
|
|
|
};
|
|
|
|
|
|
|
|
enum ResizeMethod {
|
|
|
|
rmEdgeDensityLinear = 0,
|
|
|
|
rmEdgeDensityFuzzy = 1,
|
|
|
|
rmInnerDensity = 2
|
|
|
|
};
|
|
|
|
|
|
|
|
enum {
|
|
|
|
MinKernelMass = 1000
|
|
|
|
};
|
|
|
|
|
|
|
|
SearchWindow kernel;
|
|
|
|
int searchMode;
|
|
|
|
|
|
|
|
private:
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
MaxMeanShiftIteration = 5,
|
|
|
|
MaxSetSizeIteration = 5
|
|
|
|
};
|
|
|
|
|
|
|
|
void findOptimumSearchWindow(SearchWindow &searchWindow, IplImage *maskImage, IplImage *depthMap, int maxIteration, int resizeMethod, bool initDepth);
|
|
|
|
|
|
|
|
public:
|
|
|
|
CvFuzzyMeanShiftTracker();
|
|
|
|
~CvFuzzyMeanShiftTracker();
|
|
|
|
|
|
|
|
void track(IplImage *maskImage, IplImage *depthMap, int resizeMethod, bool resetSearch, int minKernelMass = MinKernelMass);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
namespace cv
|
|
|
|
{
|
|
|
|
|
|
|
|
class CV_EXPORTS Octree
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
struct Node
|
|
|
|
{
|
|
|
|
Node() {}
|
|
|
|
int begin, end;
|
|
|
|
float x_min, x_max, y_min, y_max, z_min, z_max;
|
|
|
|
int maxLevels;
|
|
|
|
bool isLeaf;
|
|
|
|
int children[8];
|
|
|
|
};
|
|
|
|
|
|
|
|
Octree();
|
|
|
|
Octree( const std::vector<Point3f>& points, int maxLevels = 10, int minPoints = 20 );
|
|
|
|
virtual ~Octree();
|
|
|
|
|
|
|
|
virtual void buildTree( const std::vector<Point3f>& points, int maxLevels = 10, int minPoints = 20 );
|
|
|
|
virtual void getPointsWithinSphere( const Point3f& center, float radius,
|
|
|
|
std::vector<Point3f>& points ) const;
|
|
|
|
const std::vector<Node>& getNodes() const { return nodes; }
|
|
|
|
private:
|
|
|
|
int minPoints;
|
|
|
|
std::vector<Point3f> points;
|
|
|
|
std::vector<Node> nodes;
|
|
|
|
|
|
|
|
virtual void buildNext(size_t node_ind);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
class CV_EXPORTS Mesh3D
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
struct EmptyMeshException {};
|
|
|
|
|
|
|
|
Mesh3D();
|
|
|
|
Mesh3D(const std::vector<Point3f>& vtx);
|
|
|
|
~Mesh3D();
|
|
|
|
|
|
|
|
void buildOctree();
|
|
|
|
void clearOctree();
|
|
|
|
float estimateResolution(float tryRatio = 0.1f);
|
|
|
|
void computeNormals(float normalRadius, int minNeighbors = 20);
|
|
|
|
void computeNormals(const std::vector<int>& subset, float normalRadius, int minNeighbors = 20);
|
|
|
|
|
|
|
|
void writeAsVrml(const String& file, const std::vector<Scalar>& colors = std::vector<Scalar>()) const;
|
|
|
|
|
|
|
|
std::vector<Point3f> vtx;
|
|
|
|
std::vector<Point3f> normals;
|
|
|
|
float resolution;
|
|
|
|
Octree octree;
|
|
|
|
|
|
|
|
const static Point3f allzero;
|
|
|
|
};
|
|
|
|
|
|
|
|
class CV_EXPORTS SpinImageModel
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
|
|
|
|
/* model parameters, leave unset for default or auto estimate */
|
|
|
|
float normalRadius;
|
|
|
|
int minNeighbors;
|
|
|
|
|
|
|
|
float binSize;
|
|
|
|
int imageWidth;
|
|
|
|
|
|
|
|
float lambda;
|
|
|
|
float gamma;
|
|
|
|
|
|
|
|
float T_GeometriccConsistency;
|
|
|
|
float T_GroupingCorespondances;
|
|
|
|
|
|
|
|
/* public interface */
|
|
|
|
SpinImageModel();
|
|
|
|
explicit SpinImageModel(const Mesh3D& mesh);
|
|
|
|
~SpinImageModel();
|
|
|
|
|
|
|
|
void setLogger(std::ostream* log);
|
|
|
|
void selectRandomSubset(float ratio);
|
|
|
|
void setSubset(const std::vector<int>& subset);
|
|
|
|
void compute();
|
|
|
|
|
|
|
|
void match(const SpinImageModel& scene, std::vector< std::vector<Vec2i> >& result);
|
|
|
|
|
|
|
|
Mat packRandomScaledSpins(bool separateScale = false, size_t xCount = 10, size_t yCount = 10) const;
|
|
|
|
|
|
|
|
size_t getSpinCount() const { return spinImages.rows; }
|
|
|
|
Mat getSpinImage(size_t index) const { return spinImages.row((int)index); }
|
|
|
|
const Point3f& getSpinVertex(size_t index) const { return mesh.vtx[subset[index]]; }
|
|
|
|
const Point3f& getSpinNormal(size_t index) const { return mesh.normals[subset[index]]; }
|
|
|
|
|
|
|
|
const Mesh3D& getMesh() const { return mesh; }
|
|
|
|
Mesh3D& getMesh() { return mesh; }
|
|
|
|
|
|
|
|
/* static utility functions */
|
|
|
|
static bool spinCorrelation(const Mat& spin1, const Mat& spin2, float lambda, float& result);
|
|
|
|
|
|
|
|
static Point2f calcSpinMapCoo(const Point3f& point, const Point3f& vertex, const Point3f& normal);
|
|
|
|
|
|
|
|
static float geometricConsistency(const Point3f& pointScene1, const Point3f& normalScene1,
|
|
|
|
const Point3f& pointModel1, const Point3f& normalModel1,
|
|
|
|
const Point3f& pointScene2, const Point3f& normalScene2,
|
|
|
|
const Point3f& pointModel2, const Point3f& normalModel2);
|
|
|
|
|
|
|
|
static float groupingCreteria(const Point3f& pointScene1, const Point3f& normalScene1,
|
|
|
|
const Point3f& pointModel1, const Point3f& normalModel1,
|
|
|
|
const Point3f& pointScene2, const Point3f& normalScene2,
|
|
|
|
const Point3f& pointModel2, const Point3f& normalModel2,
|
|
|
|
float gamma);
|
|
|
|
protected:
|
|
|
|
void defaultParams();
|
|
|
|
|
|
|
|
void matchSpinToModel(const Mat& spin, std::vector<int>& indeces,
|
|
|
|
std::vector<float>& corrCoeffs, bool useExtremeOutliers = true) const;
|
|
|
|
|
|
|
|
void repackSpinImages(const std::vector<uchar>& mask, Mat& spinImages, bool reAlloc = true) const;
|
|
|
|
|
|
|
|
std::vector<int> subset;
|
|
|
|
Mesh3D mesh;
|
|
|
|
Mat spinImages;
|
|
|
|
std::ostream* out;
|
|
|
|
};
|
|
|
|
|
|
|
|
class CV_EXPORTS TickMeter
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
TickMeter();
|
|
|
|
void start();
|
|
|
|
void stop();
|
|
|
|
|
|
|
|
int64 getTimeTicks() const;
|
|
|
|
double getTimeMicro() const;
|
|
|
|
double getTimeMilli() const;
|
|
|
|
double getTimeSec() const;
|
|
|
|
int64 getCounter() const;
|
|
|
|
|
|
|
|
void reset();
|
|
|
|
private:
|
|
|
|
int64 counter;
|
|
|
|
int64 sumTime;
|
|
|
|
int64 startTime;
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_EXPORTS std::ostream& operator<<(std::ostream& out, const TickMeter& tm);
|
|
|
|
|
|
|
|
class CV_EXPORTS SelfSimDescriptor
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
SelfSimDescriptor();
|
|
|
|
SelfSimDescriptor(int _ssize, int _lsize,
|
|
|
|
int _startDistanceBucket=DEFAULT_START_DISTANCE_BUCKET,
|
|
|
|
int _numberOfDistanceBuckets=DEFAULT_NUM_DISTANCE_BUCKETS,
|
|
|
|
int _nangles=DEFAULT_NUM_ANGLES);
|
|
|
|
SelfSimDescriptor(const SelfSimDescriptor& ss);
|
|
|
|
virtual ~SelfSimDescriptor();
|
|
|
|
SelfSimDescriptor& operator = (const SelfSimDescriptor& ss);
|
|
|
|
|
|
|
|
size_t getDescriptorSize() const;
|
|
|
|
Size getGridSize( Size imgsize, Size winStride ) const;
|
|
|
|
|
|
|
|
virtual void compute(const Mat& img, std::vector<float>& descriptors, Size winStride=Size(),
|
|
|
|
const std::vector<Point>& locations=std::vector<Point>()) const;
|
|
|
|
virtual void computeLogPolarMapping(Mat& mappingMask) const;
|
|
|
|
virtual void SSD(const Mat& img, Point pt, Mat& ssd) const;
|
|
|
|
|
|
|
|
int smallSize;
|
|
|
|
int largeSize;
|
|
|
|
int startDistanceBucket;
|
|
|
|
int numberOfDistanceBuckets;
|
|
|
|
int numberOfAngles;
|
|
|
|
|
|
|
|
enum { DEFAULT_SMALL_SIZE = 5, DEFAULT_LARGE_SIZE = 41,
|
|
|
|
DEFAULT_NUM_ANGLES = 20, DEFAULT_START_DISTANCE_BUCKET = 3,
|
|
|
|
DEFAULT_NUM_DISTANCE_BUCKETS = 7 };
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
typedef bool (*BundleAdjustCallback)(int iteration, double norm_error, void* user_data);
|
|
|
|
|
|
|
|
class CV_EXPORTS LevMarqSparse {
|
|
|
|
public:
|
|
|
|
LevMarqSparse();
|
|
|
|
LevMarqSparse(int npoints, // number of points
|
|
|
|
int ncameras, // number of cameras
|
|
|
|
int nPointParams, // number of params per one point (3 in case of 3D points)
|
|
|
|
int nCameraParams, // number of parameters per one camera
|
|
|
|
int nErrParams, // number of parameters in measurement vector
|
|
|
|
// for 1 point at one camera (2 in case of 2D projections)
|
|
|
|
Mat& visibility, // visibility matrix. rows correspond to points, columns correspond to cameras
|
|
|
|
// 1 - point is visible for the camera, 0 - invisible
|
|
|
|
Mat& P0, // starting vector of parameters, first cameras then points
|
|
|
|
Mat& X, // measurements, in order of visibility. non visible cases are skipped
|
|
|
|
TermCriteria criteria, // termination criteria
|
|
|
|
|
|
|
|
// callback for estimation of Jacobian matrices
|
|
|
|
void (CV_CDECL * fjac)(int i, int j, Mat& point_params,
|
|
|
|
Mat& cam_params, Mat& A, Mat& B, void* data),
|
|
|
|
// callback for estimation of backprojection errors
|
|
|
|
void (CV_CDECL * func)(int i, int j, Mat& point_params,
|
|
|
|
Mat& cam_params, Mat& estim, void* data),
|
|
|
|
void* data, // user-specific data passed to the callbacks
|
|
|
|
BundleAdjustCallback cb, void* user_data
|
|
|
|
);
|
|
|
|
|
|
|
|
virtual ~LevMarqSparse();
|
|
|
|
|
|
|
|
virtual void run( int npoints, // number of points
|
|
|
|
int ncameras, // number of cameras
|
|
|
|
int nPointParams, // number of params per one point (3 in case of 3D points)
|
|
|
|
int nCameraParams, // number of parameters per one camera
|
|
|
|
int nErrParams, // number of parameters in measurement vector
|
|
|
|
// for 1 point at one camera (2 in case of 2D projections)
|
|
|
|
Mat& visibility, // visibility matrix. rows correspond to points, columns correspond to cameras
|
|
|
|
// 1 - point is visible for the camera, 0 - invisible
|
|
|
|
Mat& P0, // starting vector of parameters, first cameras then points
|
|
|
|
Mat& X, // measurements, in order of visibility. non visible cases are skipped
|
|
|
|
TermCriteria criteria, // termination criteria
|
|
|
|
|
|
|
|
// callback for estimation of Jacobian matrices
|
|
|
|
void (CV_CDECL * fjac)(int i, int j, Mat& point_params,
|
|
|
|
Mat& cam_params, Mat& A, Mat& B, void* data),
|
|
|
|
// callback for estimation of backprojection errors
|
|
|
|
void (CV_CDECL * func)(int i, int j, Mat& point_params,
|
|
|
|
Mat& cam_params, Mat& estim, void* data),
|
|
|
|
void* data // user-specific data passed to the callbacks
|
|
|
|
);
|
|
|
|
|
|
|
|
virtual void clear();
|
|
|
|
|
|
|
|
// useful function to do simple bundle adjustment tasks
|
|
|
|
static void bundleAdjust(std::vector<Point3d>& points, // positions of points in global coordinate system (input and output)
|
|
|
|
const std::vector<std::vector<Point2d> >& imagePoints, // projections of 3d points for every camera
|
|
|
|
const std::vector<std::vector<int> >& visibility, // visibility of 3d points for every camera
|
|
|
|
std::vector<Mat>& cameraMatrix, // intrinsic matrices of all cameras (input and output)
|
|
|
|
std::vector<Mat>& R, // rotation matrices of all cameras (input and output)
|
|
|
|
std::vector<Mat>& T, // translation vector of all cameras (input and output)
|
|
|
|
std::vector<Mat>& distCoeffs, // distortion coefficients of all cameras (input and output)
|
|
|
|
const TermCriteria& criteria=
|
|
|
|
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, DBL_EPSILON),
|
|
|
|
BundleAdjustCallback cb = 0, void* user_data = 0);
|
|
|
|
|
|
|
|
public:
|
|
|
|
virtual void optimize(CvMat &_vis); //main function that runs minimization
|
|
|
|
|
|
|
|
//iteratively asks for measurement for visible camera-point pairs
|
|
|
|
void ask_for_proj(CvMat &_vis,bool once=false);
|
|
|
|
//iteratively asks for Jacobians for every camera_point pair
|
|
|
|
void ask_for_projac(CvMat &_vis);
|
|
|
|
|
|
|
|
CvMat* err; //error X-hX
|
|
|
|
double prevErrNorm, errNorm;
|
|
|
|
double lambda;
|
|
|
|
CvTermCriteria criteria;
|
|
|
|
int iters;
|
|
|
|
|
|
|
|
CvMat** U; //size of array is equal to number of cameras
|
|
|
|
CvMat** V; //size of array is equal to number of points
|
|
|
|
CvMat** inv_V_star; //inverse of V*
|
|
|
|
|
|
|
|
CvMat** A;
|
|
|
|
CvMat** B;
|
|
|
|
CvMat** W;
|
|
|
|
|
|
|
|
CvMat* X; //measurement
|
|
|
|
CvMat* hX; //current measurement extimation given new parameter vector
|
|
|
|
|
|
|
|
CvMat* prevP; //current already accepted parameter.
|
|
|
|
CvMat* P; // parameters used to evaluate function with new params
|
|
|
|
// this parameters may be rejected
|
|
|
|
|
|
|
|
CvMat* deltaP; //computed increase of parameters (result of normal system solution )
|
|
|
|
|
|
|
|
CvMat** ea; // sum_i AijT * e_ij , used as right part of normal equation
|
|
|
|
// length of array is j = number of cameras
|
|
|
|
CvMat** eb; // sum_j BijT * e_ij , used as right part of normal equation
|
|
|
|
// length of array is i = number of points
|
|
|
|
|
|
|
|
CvMat** Yj; //length of array is i = num_points
|
|
|
|
|
|
|
|
CvMat* S; //big matrix of block Sjk , each block has size num_cam_params x num_cam_params
|
|
|
|
|
|
|
|
CvMat* JtJ_diag; //diagonal of JtJ, used to backup diagonal elements before augmentation
|
|
|
|
|
|
|
|
CvMat* Vis_index; // matrix which element is index of measurement for point i and camera j
|
|
|
|
|
|
|
|
int num_cams;
|
|
|
|
int num_points;
|
|
|
|
int num_err_param;
|
|
|
|
int num_cam_param;
|
|
|
|
int num_point_param;
|
|
|
|
|
|
|
|
//target function and jacobian pointers, which needs to be initialized
|
|
|
|
void (*fjac)(int i, int j, Mat& point_params, Mat& cam_params, Mat& A, Mat& B, void* data);
|
|
|
|
void (*func)(int i, int j, Mat& point_params, Mat& cam_params, Mat& estim, void* data);
|
|
|
|
|
|
|
|
void* data;
|
|
|
|
|
|
|
|
BundleAdjustCallback cb;
|
|
|
|
void* user_data;
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_EXPORTS_W int chamerMatching( Mat& img, Mat& templ,
|
|
|
|
CV_OUT std::vector<std::vector<Point> >& results, CV_OUT std::vector<float>& cost,
|
|
|
|
double templScale=1, int maxMatches = 20,
|
|
|
|
double minMatchDistance = 1.0, int padX = 3,
|
|
|
|
int padY = 3, int scales = 5, double minScale = 0.6, double maxScale = 1.6,
|
|
|
|
double orientationWeight = 0.5, double truncate = 20);
|
|
|
|
|
|
|
|
|
|
|
|
class CV_EXPORTS_W StereoVar
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
// Flags
|
|
|
|
enum {USE_INITIAL_DISPARITY = 1, USE_EQUALIZE_HIST = 2, USE_SMART_ID = 4, USE_AUTO_PARAMS = 8, USE_MEDIAN_FILTERING = 16};
|
|
|
|
enum {CYCLE_O, CYCLE_V};
|
|
|
|
enum {PENALIZATION_TICHONOV, PENALIZATION_CHARBONNIER, PENALIZATION_PERONA_MALIK};
|
|
|
|
|
|
|
|
//! the default constructor
|
|
|
|
CV_WRAP StereoVar();
|
|
|
|
|
|
|
|
//! the full constructor taking all the necessary algorithm parameters
|
|
|
|
CV_WRAP StereoVar(int levels, double pyrScale, int nIt, int minDisp, int maxDisp, int poly_n, double poly_sigma, float fi, float lambda, int penalization, int cycle, int flags);
|
|
|
|
|
|
|
|
//! the destructor
|
|
|
|
virtual ~StereoVar();
|
|
|
|
|
|
|
|
//! the stereo correspondence operator that computes disparity map for the specified rectified stereo pair
|
|
|
|
CV_WRAP_AS(compute) virtual void operator()(const Mat& left, const Mat& right, CV_OUT Mat& disp);
|
|
|
|
|
|
|
|
CV_PROP_RW int levels;
|
|
|
|
CV_PROP_RW double pyrScale;
|
|
|
|
CV_PROP_RW int nIt;
|
|
|
|
CV_PROP_RW int minDisp;
|
|
|
|
CV_PROP_RW int maxDisp;
|
|
|
|
CV_PROP_RW int poly_n;
|
|
|
|
CV_PROP_RW double poly_sigma;
|
|
|
|
CV_PROP_RW float fi;
|
|
|
|
CV_PROP_RW float lambda;
|
|
|
|
CV_PROP_RW int penalization;
|
|
|
|
CV_PROP_RW int cycle;
|
|
|
|
CV_PROP_RW int flags;
|
|
|
|
|
|
|
|
private:
|
|
|
|
void autoParams();
|
|
|
|
void FMG(Mat &I1, Mat &I2, Mat &I2x, Mat &u, int level);
|
|
|
|
void VCycle_MyFAS(Mat &I1_h, Mat &I2_h, Mat &I2x_h, Mat &u_h, int level);
|
|
|
|
void VariationalSolver(Mat &I1_h, Mat &I2_h, Mat &I2x_h, Mat &u_h, int level);
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_EXPORTS void polyfit(const Mat& srcx, const Mat& srcy, Mat& dst, int order);
|
|
|
|
|
|
|
|
class CV_EXPORTS Directory
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
static std::vector<String> GetListFiles ( const String& path, const String & exten = "*", bool addPath = true );
|
|
|
|
static std::vector<String> GetListFilesR ( const String& path, const String & exten = "*", bool addPath = true );
|
|
|
|
static std::vector<String> GetListFolders( const String& path, const String & exten = "*", bool addPath = true );
|
|
|
|
};
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Generation of a set of different colors by the following way:
|
|
|
|
* 1) generate more then need colors (in "factor" times) in RGB,
|
|
|
|
* 2) convert them to Lab,
|
|
|
|
* 3) choose the needed count of colors from the set that are more different from
|
|
|
|
* each other,
|
|
|
|
* 4) convert the colors back to RGB
|
|
|
|
*/
|
|
|
|
CV_EXPORTS void generateColors( std::vector<Scalar>& colors, size_t count, size_t factor=100 );
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Estimate the rigid body motion from frame0 to frame1. The method is based on the paper
|
|
|
|
* "Real-Time Visual Odometry from Dense RGB-D Images", F. Steinbucker, J. Strum, D. Cremers, ICCV, 2011.
|
|
|
|
*/
|
|
|
|
enum { ROTATION = 1,
|
|
|
|
TRANSLATION = 2,
|
|
|
|
RIGID_BODY_MOTION = 4
|
|
|
|
};
|
|
|
|
CV_EXPORTS bool RGBDOdometry( Mat& Rt, const Mat& initRt,
|
|
|
|
const Mat& image0, const Mat& depth0, const Mat& mask0,
|
|
|
|
const Mat& image1, const Mat& depth1, const Mat& mask1,
|
|
|
|
const Mat& cameraMatrix, float minDepth=0.f, float maxDepth=4.f, float maxDepthDiff=0.07f,
|
|
|
|
const std::vector<int>& iterCounts=std::vector<int>(),
|
|
|
|
const std::vector<float>& minGradientMagnitudes=std::vector<float>(),
|
|
|
|
int transformType=RIGID_BODY_MOTION );
|
|
|
|
|
|
|
|
/**
|
|
|
|
*Bilinear interpolation technique.
|
|
|
|
*
|
|
|
|
*The value of a desired cortical pixel is obtained through a bilinear interpolation of the values
|
|
|
|
*of the four nearest neighbouring Cartesian pixels to the center of the RF.
|
|
|
|
*The same principle is applied to the inverse transformation.
|
|
|
|
*
|
|
|
|
*More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS LogPolar_Interp
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
|
|
|
|
LogPolar_Interp() {}
|
|
|
|
|
|
|
|
/**
|
|
|
|
*Constructor
|
|
|
|
*\param w the width of the input image
|
|
|
|
*\param h the height of the input image
|
|
|
|
*\param center the transformation center: where the output precision is maximal
|
|
|
|
*\param R the number of rings of the cortical image (default value 70 pixel)
|
|
|
|
*\param ro0 the radius of the blind spot (default value 3 pixel)
|
|
|
|
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
|
|
|
|
* \a 0 means that the retinal image is computed within the inscribed circle.
|
|
|
|
*\param S the number of sectors of the cortical image (default value 70 pixel).
|
|
|
|
* Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
|
|
|
|
*\param sp \a 1 (default value) means that the parameter \a S is internally computed.
|
|
|
|
* \a 0 means that the parameter \a S is provided by the user.
|
|
|
|
*/
|
|
|
|
LogPolar_Interp(int w, int h, Point2i center, int R=70, double ro0=3.0,
|
|
|
|
int interp=INTER_LINEAR, int full=1, int S=117, int sp=1);
|
|
|
|
/**
|
|
|
|
*Transformation from Cartesian image to cortical (log-polar) image.
|
|
|
|
*\param source the Cartesian image
|
|
|
|
*\return the transformed image (cortical image)
|
|
|
|
*/
|
|
|
|
const Mat to_cortical(const Mat &source);
|
|
|
|
/**
|
|
|
|
*Transformation from cortical image to retinal (inverse log-polar) image.
|
|
|
|
*\param source the cortical image
|
|
|
|
*\return the transformed image (retinal image)
|
|
|
|
*/
|
|
|
|
const Mat to_cartesian(const Mat &source);
|
|
|
|
/**
|
|
|
|
*Destructor
|
|
|
|
*/
|
|
|
|
~LogPolar_Interp();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
|
|
|
Mat Rsri;
|
|
|
|
Mat Csri;
|
|
|
|
|
|
|
|
int S, R, M, N;
|
|
|
|
int top, bottom,left,right;
|
|
|
|
double ro0, romax, a, q;
|
|
|
|
int interp;
|
|
|
|
|
|
|
|
Mat ETAyx;
|
|
|
|
Mat CSIyx;
|
|
|
|
|
|
|
|
void create_map(int M, int N, int R, int S, double ro0);
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
*Overlapping circular receptive fields technique
|
|
|
|
*
|
|
|
|
*The Cartesian plane is divided in two regions: the fovea and the periphery.
|
|
|
|
*The fovea (oversampling) is handled by using the bilinear interpolation technique described above, whereas in
|
|
|
|
*the periphery we use the overlapping Gaussian circular RFs.
|
|
|
|
*
|
|
|
|
*More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS LogPolar_Overlapping
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
LogPolar_Overlapping() {}
|
|
|
|
|
|
|
|
/**
|
|
|
|
*Constructor
|
|
|
|
*\param w the width of the input image
|
|
|
|
*\param h the height of the input image
|
|
|
|
*\param center the transformation center: where the output precision is maximal
|
|
|
|
*\param R the number of rings of the cortical image (default value 70 pixel)
|
|
|
|
*\param ro0 the radius of the blind spot (default value 3 pixel)
|
|
|
|
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
|
|
|
|
* \a 0 means that the retinal image is computed within the inscribed circle.
|
|
|
|
*\param S the number of sectors of the cortical image (default value 70 pixel).
|
|
|
|
* Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
|
|
|
|
*\param sp \a 1 (default value) means that the parameter \a S is internally computed.
|
|
|
|
* \a 0 means that the parameter \a S is provided by the user.
|
|
|
|
*/
|
|
|
|
LogPolar_Overlapping(int w, int h, Point2i center, int R=70,
|
|
|
|
double ro0=3.0, int full=1, int S=117, int sp=1);
|
|
|
|
/**
|
|
|
|
*Transformation from Cartesian image to cortical (log-polar) image.
|
|
|
|
*\param source the Cartesian image
|
|
|
|
*\return the transformed image (cortical image)
|
|
|
|
*/
|
|
|
|
const Mat to_cortical(const Mat &source);
|
|
|
|
/**
|
|
|
|
*Transformation from cortical image to retinal (inverse log-polar) image.
|
|
|
|
*\param source the cortical image
|
|
|
|
*\return the transformed image (retinal image)
|
|
|
|
*/
|
|
|
|
const Mat to_cartesian(const Mat &source);
|
|
|
|
/**
|
|
|
|
*Destructor
|
|
|
|
*/
|
|
|
|
~LogPolar_Overlapping();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
|
|
|
|
Mat Rsri;
|
|
|
|
Mat Csri;
|
|
|
|
std::vector<int> Rsr;
|
|
|
|
std::vector<int> Csr;
|
|
|
|
std::vector<double> Wsr;
|
|
|
|
|
|
|
|
int S, R, M, N, ind1;
|
|
|
|
int top, bottom,left,right;
|
|
|
|
double ro0, romax, a, q;
|
|
|
|
|
|
|
|
struct kernel
|
|
|
|
{
|
|
|
|
kernel() { w = 0; }
|
|
|
|
std::vector<double> weights;
|
|
|
|
int w;
|
|
|
|
};
|
|
|
|
|
|
|
|
Mat ETAyx;
|
|
|
|
Mat CSIyx;
|
|
|
|
std::vector<kernel> w_ker_2D;
|
|
|
|
|
|
|
|
void create_map(int M, int N, int R, int S, double ro0);
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Adjacent receptive fields technique
|
|
|
|
*
|
|
|
|
*All the Cartesian pixels, whose coordinates in the cortical domain share the same integer part, are assigned to the same RF.
|
|
|
|
*The precision of the boundaries of the RF can be improved by breaking each pixel into subpixels and assigning each of them to the correct RF.
|
|
|
|
*This technique is implemented from: Traver, V., Pla, F.: Log-polar mapping template design: From task-level requirements
|
|
|
|
*to geometry parameters. Image Vision Comput. 26(10) (2008) 1354-1370
|
|
|
|
*
|
|
|
|
*More details can be found in http://dx.doi.org/10.1007/978-3-642-23968-7_5
|
|
|
|
*/
|
|
|
|
class CV_EXPORTS LogPolar_Adjacent
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
LogPolar_Adjacent() {}
|
|
|
|
|
|
|
|
/**
|
|
|
|
*Constructor
|
|
|
|
*\param w the width of the input image
|
|
|
|
*\param h the height of the input image
|
|
|
|
*\param center the transformation center: where the output precision is maximal
|
|
|
|
*\param R the number of rings of the cortical image (default value 70 pixel)
|
|
|
|
*\param ro0 the radius of the blind spot (default value 3 pixel)
|
|
|
|
*\param smin the size of the subpixel (default value 0.25 pixel)
|
|
|
|
*\param full \a 1 (default value) means that the retinal image (the inverse transform) is computed within the circumscribing circle.
|
|
|
|
* \a 0 means that the retinal image is computed within the inscribed circle.
|
|
|
|
*\param S the number of sectors of the cortical image (default value 70 pixel).
|
|
|
|
* Its value is usually internally computed to obtain a pixel aspect ratio equals to 1.
|
|
|
|
*\param sp \a 1 (default value) means that the parameter \a S is internally computed.
|
|
|
|
* \a 0 means that the parameter \a S is provided by the user.
|
|
|
|
*/
|
|
|
|
LogPolar_Adjacent(int w, int h, Point2i center, int R=70, double ro0=3.0, double smin=0.25, int full=1, int S=117, int sp=1);
|
|
|
|
/**
|
|
|
|
*Transformation from Cartesian image to cortical (log-polar) image.
|
|
|
|
*\param source the Cartesian image
|
|
|
|
*\return the transformed image (cortical image)
|
|
|
|
*/
|
|
|
|
const Mat to_cortical(const Mat &source);
|
|
|
|
/**
|
|
|
|
*Transformation from cortical image to retinal (inverse log-polar) image.
|
|
|
|
*\param source the cortical image
|
|
|
|
*\return the transformed image (retinal image)
|
|
|
|
*/
|
|
|
|
const Mat to_cartesian(const Mat &source);
|
|
|
|
/**
|
|
|
|
*Destructor
|
|
|
|
*/
|
|
|
|
~LogPolar_Adjacent();
|
|
|
|
|
|
|
|
protected:
|
|
|
|
struct pixel
|
|
|
|
{
|
|
|
|
pixel() { u = v = 0; a = 0.; }
|
|
|
|
int u;
|
|
|
|
int v;
|
|
|
|
double a;
|
|
|
|
};
|
|
|
|
int S, R, M, N;
|
|
|
|
int top, bottom,left,right;
|
|
|
|
double ro0, romax, a, q;
|
|
|
|
std::vector<std::vector<pixel> > L;
|
|
|
|
std::vector<double> A;
|
|
|
|
|
|
|
|
void subdivide_recursively(double x, double y, int i, int j, double length, double smin);
|
|
|
|
bool get_uv(double x, double y, int&u, int&v);
|
|
|
|
void create_map(int M, int N, int R, int S, double ro0, double smin);
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_EXPORTS Mat subspaceProject(InputArray W, InputArray mean, InputArray src);
|
|
|
|
CV_EXPORTS Mat subspaceReconstruct(InputArray W, InputArray mean, InputArray src);
|
|
|
|
|
|
|
|
class CV_EXPORTS LDA
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
// Initializes a LDA with num_components (default 0) and specifies how
|
|
|
|
// samples are aligned (default dataAsRow=true).
|
|
|
|
LDA(int num_components = 0) :
|
|
|
|
_num_components(num_components) {};
|
|
|
|
|
|
|
|
// Initializes and performs a Discriminant Analysis with Fisher's
|
|
|
|
// Optimization Criterion on given data in src and corresponding labels
|
|
|
|
// in labels. If 0 (or less) number of components are given, they are
|
|
|
|
// automatically determined for given data in computation.
|
|
|
|
LDA(InputArrayOfArrays src, InputArray labels,
|
|
|
|
int num_components = 0) :
|
|
|
|
_num_components(num_components)
|
|
|
|
{
|
|
|
|
this->compute(src, labels); //! compute eigenvectors and eigenvalues
|
|
|
|
}
|
|
|
|
|
|
|
|
// Serializes this object to a given filename.
|
|
|
|
void save(const String& filename) const;
|
|
|
|
|
|
|
|
// Deserializes this object from a given filename.
|
|
|
|
void load(const String& filename);
|
|
|
|
|
|
|
|
// Serializes this object to a given cv::FileStorage.
|
|
|
|
void save(FileStorage& fs) const;
|
|
|
|
|
|
|
|
// Deserializes this object from a given cv::FileStorage.
|
|
|
|
void load(const FileStorage& node);
|
|
|
|
|
|
|
|
// Destructor.
|
|
|
|
~LDA() {}
|
|
|
|
|
|
|
|
//! Compute the discriminants for data in src and labels.
|
|
|
|
void compute(InputArrayOfArrays src, InputArray labels);
|
|
|
|
|
|
|
|
// Projects samples into the LDA subspace.
|
|
|
|
Mat project(InputArray src);
|
|
|
|
|
|
|
|
// Reconstructs projections from the LDA subspace.
|
|
|
|
Mat reconstruct(InputArray src);
|
|
|
|
|
|
|
|
// Returns the eigenvectors of this LDA.
|
|
|
|
Mat eigenvectors() const { return _eigenvectors; };
|
|
|
|
|
|
|
|
// Returns the eigenvalues of this LDA.
|
|
|
|
Mat eigenvalues() const { return _eigenvalues; }
|
|
|
|
|
|
|
|
protected:
|
|
|
|
bool _dataAsRow;
|
|
|
|
int _num_components;
|
|
|
|
Mat _eigenvectors;
|
|
|
|
Mat _eigenvalues;
|
|
|
|
|
|
|
|
void lda(InputArrayOfArrays src, InputArray labels);
|
|
|
|
};
|
|
|
|
|
|
|
|
class CV_EXPORTS_W FaceRecognizer : public Algorithm
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
//! virtual destructor
|
|
|
|
virtual ~FaceRecognizer() {}
|
|
|
|
|
|
|
|
// Trains a FaceRecognizer.
|
|
|
|
CV_WRAP virtual void train(InputArrayOfArrays src, InputArray labels) = 0;
|
|
|
|
|
|
|
|
// Updates a FaceRecognizer.
|
|
|
|
CV_WRAP virtual void update(InputArrayOfArrays src, InputArray labels);
|
|
|
|
|
|
|
|
// Gets a prediction from a FaceRecognizer.
|
|
|
|
virtual int predict(InputArray src) const = 0;
|
|
|
|
|
|
|
|
// Predicts the label and confidence for a given sample.
|
|
|
|
CV_WRAP virtual void predict(InputArray src, CV_OUT int &label, CV_OUT double &confidence) const = 0;
|
|
|
|
|
|
|
|
// Serializes this object to a given filename.
|
|
|
|
CV_WRAP virtual void save(const String& filename) const;
|
|
|
|
|
|
|
|
// Deserializes this object from a given filename.
|
|
|
|
CV_WRAP virtual void load(const String& filename);
|
|
|
|
|
|
|
|
// Serializes this object to a given cv::FileStorage.
|
|
|
|
virtual void save(FileStorage& fs) const = 0;
|
|
|
|
|
|
|
|
// Deserializes this object from a given cv::FileStorage.
|
|
|
|
virtual void load(const FileStorage& fs) = 0;
|
|
|
|
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_EXPORTS_W Ptr<FaceRecognizer> createEigenFaceRecognizer(int num_components = 0, double threshold = DBL_MAX);
|
|
|
|
CV_EXPORTS_W Ptr<FaceRecognizer> createFisherFaceRecognizer(int num_components = 0, double threshold = DBL_MAX);
|
|
|
|
CV_EXPORTS_W Ptr<FaceRecognizer> createLBPHFaceRecognizer(int radius=1, int neighbors=8,
|
|
|
|
int grid_x=8, int grid_y=8, double threshold = DBL_MAX);
|
|
|
|
|
|
|
|
enum
|
|
|
|
{
|
|
|
|
COLORMAP_AUTUMN = 0,
|
|
|
|
COLORMAP_BONE = 1,
|
|
|
|
COLORMAP_JET = 2,
|
|
|
|
COLORMAP_WINTER = 3,
|
|
|
|
COLORMAP_RAINBOW = 4,
|
|
|
|
COLORMAP_OCEAN = 5,
|
|
|
|
COLORMAP_SUMMER = 6,
|
|
|
|
COLORMAP_SPRING = 7,
|
|
|
|
COLORMAP_COOL = 8,
|
|
|
|
COLORMAP_HSV = 9,
|
|
|
|
COLORMAP_PINK = 10,
|
|
|
|
COLORMAP_HOT = 11
|
|
|
|
};
|
|
|
|
|
|
|
|
CV_EXPORTS_W void applyColorMap(InputArray src, OutputArray dst, int colormap);
|
|
|
|
|
|
|
|
CV_EXPORTS bool initModule_contrib();
|
|
|
|
}
|
|
|
|
|
|
|
|
#include "opencv2/contrib/retina.hpp"
|
|
|
|
|
|
|
|
#include "opencv2/contrib/openfabmap.hpp"
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif
|