|
|
|
#include <iostream>
|
|
|
|
#include <fstream>
|
|
|
|
|
|
|
|
#include <opencv2/core/utility.hpp>
|
|
|
|
#include "opencv2/video.hpp"
|
|
|
|
#include "opencv2/imgcodecs.hpp"
|
|
|
|
#include "opencv2/highgui.hpp"
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
inline bool isFlowCorrect(Point2f u)
|
|
|
|
{
|
|
|
|
return !cvIsNaN(u.x) && !cvIsNaN(u.y) && fabs(u.x) < 1e9 && fabs(u.y) < 1e9;
|
|
|
|
}
|
|
|
|
|
|
|
|
static Vec3b computeColor(float fx, float fy)
|
|
|
|
{
|
|
|
|
static bool first = true;
|
|
|
|
|
|
|
|
// relative lengths of color transitions:
|
|
|
|
// these are chosen based on perceptual similarity
|
|
|
|
// (e.g. one can distinguish more shades between red and yellow
|
|
|
|
// than between yellow and green)
|
|
|
|
const int RY = 15;
|
|
|
|
const int YG = 6;
|
|
|
|
const int GC = 4;
|
|
|
|
const int CB = 11;
|
|
|
|
const int BM = 13;
|
|
|
|
const int MR = 6;
|
|
|
|
const int NCOLS = RY + YG + GC + CB + BM + MR;
|
|
|
|
static Vec3i colorWheel[NCOLS];
|
|
|
|
|
|
|
|
if (first)
|
|
|
|
{
|
|
|
|
int k = 0;
|
|
|
|
|
|
|
|
for (int i = 0; i < RY; ++i, ++k)
|
|
|
|
colorWheel[k] = Vec3i(255, 255 * i / RY, 0);
|
|
|
|
|
|
|
|
for (int i = 0; i < YG; ++i, ++k)
|
|
|
|
colorWheel[k] = Vec3i(255 - 255 * i / YG, 255, 0);
|
|
|
|
|
|
|
|
for (int i = 0; i < GC; ++i, ++k)
|
|
|
|
colorWheel[k] = Vec3i(0, 255, 255 * i / GC);
|
|
|
|
|
|
|
|
for (int i = 0; i < CB; ++i, ++k)
|
|
|
|
colorWheel[k] = Vec3i(0, 255 - 255 * i / CB, 255);
|
|
|
|
|
|
|
|
for (int i = 0; i < BM; ++i, ++k)
|
|
|
|
colorWheel[k] = Vec3i(255 * i / BM, 0, 255);
|
|
|
|
|
|
|
|
for (int i = 0; i < MR; ++i, ++k)
|
|
|
|
colorWheel[k] = Vec3i(255, 0, 255 - 255 * i / MR);
|
|
|
|
|
|
|
|
first = false;
|
|
|
|
}
|
|
|
|
|
|
|
|
const float rad = sqrt(fx * fx + fy * fy);
|
|
|
|
const float a = atan2(-fy, -fx) / (float)CV_PI;
|
|
|
|
|
|
|
|
const float fk = (a + 1.0f) / 2.0f * (NCOLS - 1);
|
|
|
|
const int k0 = static_cast<int>(fk);
|
|
|
|
const int k1 = (k0 + 1) % NCOLS;
|
|
|
|
const float f = fk - k0;
|
|
|
|
|
|
|
|
Vec3b pix;
|
|
|
|
|
|
|
|
for (int b = 0; b < 3; b++)
|
|
|
|
{
|
|
|
|
const float col0 = colorWheel[k0][b] / 255.f;
|
|
|
|
const float col1 = colorWheel[k1][b] / 255.f;
|
|
|
|
|
|
|
|
float col = (1 - f) * col0 + f * col1;
|
|
|
|
|
|
|
|
if (rad <= 1)
|
|
|
|
col = 1 - rad * (1 - col); // increase saturation with radius
|
|
|
|
else
|
|
|
|
col *= .75; // out of range
|
|
|
|
|
|
|
|
pix[2 - b] = static_cast<uchar>(255.f * col);
|
|
|
|
}
|
|
|
|
|
|
|
|
return pix;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void drawOpticalFlow(const Mat_<Point2f>& flow, Mat& dst, float maxmotion = -1)
|
|
|
|
{
|
|
|
|
dst.create(flow.size(), CV_8UC3);
|
|
|
|
dst.setTo(Scalar::all(0));
|
|
|
|
|
|
|
|
// determine motion range:
|
|
|
|
float maxrad = maxmotion;
|
|
|
|
|
|
|
|
if (maxmotion <= 0)
|
|
|
|
{
|
|
|
|
maxrad = 1;
|
|
|
|
for (int y = 0; y < flow.rows; ++y)
|
|
|
|
{
|
|
|
|
for (int x = 0; x < flow.cols; ++x)
|
|
|
|
{
|
|
|
|
Point2f u = flow(y, x);
|
|
|
|
|
|
|
|
if (!isFlowCorrect(u))
|
|
|
|
continue;
|
|
|
|
|
|
|
|
maxrad = max(maxrad, sqrt(u.x * u.x + u.y * u.y));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (int y = 0; y < flow.rows; ++y)
|
|
|
|
{
|
|
|
|
for (int x = 0; x < flow.cols; ++x)
|
|
|
|
{
|
|
|
|
Point2f u = flow(y, x);
|
|
|
|
|
|
|
|
if (isFlowCorrect(u))
|
|
|
|
dst.at<Vec3b>(y, x) = computeColor(u.x / maxrad, u.y / maxrad);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// binary file format for flow data specified here:
|
|
|
|
// http://vision.middlebury.edu/flow/data/
|
|
|
|
static void writeOpticalFlowToFile(const Mat_<Point2f>& flow, const string& fileName)
|
|
|
|
{
|
|
|
|
static const char FLO_TAG_STRING[] = "PIEH";
|
|
|
|
|
|
|
|
ofstream file(fileName.c_str(), ios_base::binary);
|
|
|
|
|
|
|
|
file << FLO_TAG_STRING;
|
|
|
|
|
|
|
|
file.write((const char*) &flow.cols, sizeof(int));
|
|
|
|
file.write((const char*) &flow.rows, sizeof(int));
|
|
|
|
|
|
|
|
for (int i = 0; i < flow.rows; ++i)
|
|
|
|
{
|
|
|
|
for (int j = 0; j < flow.cols; ++j)
|
|
|
|
{
|
|
|
|
const Point2f u = flow(i, j);
|
|
|
|
|
|
|
|
file.write((const char*) &u.x, sizeof(float));
|
|
|
|
file.write((const char*) &u.y, sizeof(float));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int main(int argc, const char* argv[])
|
|
|
|
{
|
|
|
|
if (argc < 3)
|
|
|
|
{
|
|
|
|
cerr << "Usage : " << argv[0] << "<frame0> <frame1> [<output_flow>]" << endl;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat frame0 = imread(argv[1], IMREAD_GRAYSCALE);
|
|
|
|
Mat frame1 = imread(argv[2], IMREAD_GRAYSCALE);
|
|
|
|
|
|
|
|
if (frame0.empty())
|
|
|
|
{
|
|
|
|
cerr << "Can't open image [" << argv[1] << "]" << endl;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
if (frame1.empty())
|
|
|
|
{
|
|
|
|
cerr << "Can't open image [" << argv[2] << "]" << endl;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (frame1.size() != frame0.size())
|
|
|
|
{
|
|
|
|
cerr << "Images should be of equal sizes" << endl;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
Mat_<Point2f> flow;
|
|
|
|
Ptr<DenseOpticalFlow> tvl1 = createOptFlow_DualTVL1();
|
|
|
|
|
|
|
|
const double start = (double)getTickCount();
|
|
|
|
tvl1->calc(frame0, frame1, flow);
|
|
|
|
const double timeSec = (getTickCount() - start) / getTickFrequency();
|
|
|
|
cout << "calcOpticalFlowDual_TVL1 : " << timeSec << " sec" << endl;
|
|
|
|
|
|
|
|
Mat out;
|
|
|
|
drawOpticalFlow(flow, out);
|
|
|
|
|
|
|
|
if (argc == 4)
|
|
|
|
writeOpticalFlowToFile(flow, argv[3]);
|
|
|
|
|
|
|
|
imshow("Flow", out);
|
|
|
|
waitKey();
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|