mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
60 lines
2.2 KiB
60 lines
2.2 KiB
7 years ago
|
import numpy as np
|
||
|
import argparse
|
||
|
import os
|
||
|
import sys
|
||
|
sys.path.append('/home/arrybn/build/opencv/lib')
|
||
|
import cv2 as cv
|
||
|
try:
|
||
|
import cv2 as cv
|
||
|
except ImportError:
|
||
|
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
|
||
|
'configure environemnt variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
|
||
|
|
||
|
from cv2 import dnn
|
||
|
|
||
|
inWidth = 300
|
||
|
inHeight = 300
|
||
|
confThreshold = 0.5
|
||
|
|
||
|
prototxt = 'face_detector/deploy.prototxt'
|
||
|
caffemodel = 'face_detector/res10_300x300_ssd_iter_140000.caffemodel'
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
net = dnn.readNetFromCaffe(prototxt, caffemodel)
|
||
|
cap = cv.VideoCapture(0)
|
||
|
while True:
|
||
|
ret, frame = cap.read()
|
||
|
cols = frame.shape[1]
|
||
|
rows = frame.shape[0]
|
||
|
|
||
|
net.setInput(dnn.blobFromImage(cv.resize(frame, (inWidth, inHeight)),
|
||
|
1.0, (inWidth, inHeight), (104., 177., 123.)))
|
||
|
detections = net.forward()
|
||
|
|
||
|
perf_stats = net.getPerfProfile()
|
||
|
|
||
|
print('Inference time, ms: %.2f' % (perf_stats[0] / cv.getTickFrequency() * 1000))
|
||
|
|
||
|
for i in range(detections.shape[2]):
|
||
|
confidence = detections[0, 0, i, 2]
|
||
|
if confidence > confThreshold:
|
||
|
xLeftBottom = int(detections[0, 0, i, 3] * cols)
|
||
|
yLeftBottom = int(detections[0, 0, i, 4] * rows)
|
||
|
xRightTop = int(detections[0, 0, i, 5] * cols)
|
||
|
yRightTop = int(detections[0, 0, i, 6] * rows)
|
||
|
|
||
|
cv.rectangle(frame, (xLeftBottom, yLeftBottom), (xRightTop, yRightTop),
|
||
|
(0, 255, 0))
|
||
|
label = "face: %.4f" % confidence
|
||
|
labelSize, baseLine = cv.getTextSize(label, cv.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
||
|
|
||
|
cv.rectangle(frame, (xLeftBottom, yLeftBottom - labelSize[1]),
|
||
|
(xLeftBottom + labelSize[0], yLeftBottom + baseLine),
|
||
|
(255, 255, 255), cv.FILLED)
|
||
|
cv.putText(frame, label, (xLeftBottom, yLeftBottom),
|
||
|
cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
|
||
|
|
||
|
cv.imshow("detections", frame)
|
||
|
if cv.waitKey(1) != -1:
|
||
|
break
|