Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

530 lines
18 KiB

// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
/*
Test for Tensorflow models loading
*/
#include "test_precomp.hpp"
#include "npy_blob.hpp"
#include <opencv2/dnn/layer.details.hpp> // CV_DNN_REGISTER_LAYER_CLASS
namespace opencv_test
{
using namespace cv;
using namespace cv::dnn;
template<typename TString>
static std::string _tf(TString filename)
{
return (getOpenCVExtraDir() + "/dnn/") + filename;
}
TEST(Test_TensorFlow, read_inception)
{
Net net;
{
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
net = readNetFromTensorflow(model);
ASSERT_FALSE(net.empty());
}
Mat sample = imread(_tf("grace_hopper_227.png"));
ASSERT_TRUE(!sample.empty());
Mat input;
resize(sample, input, Size(224, 224));
input -= 128; // mean sub
Mat inputBlob = blobFromImage(input);
net.setInput(inputBlob, "input");
Mat out = net.forward("softmax2");
std::cout << out.dims << std::endl;
}
TEST(Test_TensorFlow, inception_accuracy)
{
Net net;
{
const string model = findDataFile("dnn/tensorflow_inception_graph.pb", false);
net = readNetFromTensorflow(model);
ASSERT_FALSE(net.empty());
}
Mat sample = imread(_tf("grace_hopper_227.png"));
ASSERT_TRUE(!sample.empty());
resize(sample, sample, Size(224, 224));
Mat inputBlob = blobFromImage(sample);
net.setInput(inputBlob, "input");
Mat out = net.forward("softmax2");
Mat ref = blobFromNPY(_tf("tf_inception_prob.npy"));
normAssert(ref, out);
}
static std::string path(const std::string& file)
{
return findDataFile("dnn/tensorflow/" + file, false);
}
static void runTensorFlowNet(const std::string& prefix, int targetId = DNN_TARGET_CPU, bool hasText = false,
double l1 = 1e-5, double lInf = 1e-4,
bool memoryLoad = false)
{
std::string netPath = path(prefix + "_net.pb");
std::string netConfig = (hasText ? path(prefix + "_net.pbtxt") : "");
std::string inpPath = path(prefix + "_in.npy");
std::string outPath = path(prefix + "_out.npy");
Net net;
if (memoryLoad)
{
// Load files into a memory buffers
string dataModel;
ASSERT_TRUE(readFileInMemory(netPath, dataModel));
string dataConfig;
if (hasText)
ASSERT_TRUE(readFileInMemory(netConfig, dataConfig));
net = readNetFromTensorflow(dataModel.c_str(), dataModel.size(),
dataConfig.c_str(), dataConfig.size());
}
else
net = readNetFromTensorflow(netPath, netConfig);
ASSERT_FALSE(net.empty());
net.setPreferableBackend(DNN_BACKEND_DEFAULT);
net.setPreferableTarget(targetId);
cv::Mat input = blobFromNPY(inpPath);
cv::Mat target = blobFromNPY(outPath);
net.setInput(input);
cv::Mat output = net.forward();
normAssert(target, output, "", l1, lInf);
}
typedef testing::TestWithParam<DNNTarget> Test_TensorFlow_layers;
TEST_P(Test_TensorFlow_layers, conv)
{
int targetId = GetParam();
runTensorFlowNet("single_conv", targetId);
runTensorFlowNet("atrous_conv2d_valid", targetId);
runTensorFlowNet("atrous_conv2d_same", targetId);
runTensorFlowNet("depthwise_conv2d", targetId);
}
TEST_P(Test_TensorFlow_layers, padding)
{
int targetId = GetParam();
runTensorFlowNet("padding_same", targetId);
runTensorFlowNet("padding_valid", targetId);
runTensorFlowNet("spatial_padding", targetId);
}
TEST_P(Test_TensorFlow_layers, eltwise_add_mul)
{
runTensorFlowNet("eltwise_add_mul", GetParam());
}
TEST_P(Test_TensorFlow_layers, pad_and_concat)
{
runTensorFlowNet("pad_and_concat", GetParam());
}
TEST_P(Test_TensorFlow_layers, batch_norm)
{
int targetId = GetParam();
runTensorFlowNet("batch_norm", targetId);
runTensorFlowNet("fused_batch_norm", targetId);
runTensorFlowNet("batch_norm_text", targetId, true);
runTensorFlowNet("mvn_batch_norm", targetId);
runTensorFlowNet("mvn_batch_norm_1x1", targetId);
runTensorFlowNet("unfused_batch_norm", targetId);
runTensorFlowNet("fused_batch_norm_no_gamma", targetId);
runTensorFlowNet("unfused_batch_norm_no_gamma", targetId);
}
TEST_P(Test_TensorFlow_layers, pooling)
{
int targetId = GetParam();
runTensorFlowNet("max_pool_even", targetId);
runTensorFlowNet("max_pool_odd_valid", targetId);
runTensorFlowNet("ave_pool_same", targetId);
runTensorFlowNet("max_pool_odd_same", targetId);
runTensorFlowNet("reduce_mean", targetId); // an average pooling over all spatial dimensions.
}
TEST_P(Test_TensorFlow_layers, deconvolution)
{
int targetId = GetParam();
runTensorFlowNet("deconvolution", targetId);
runTensorFlowNet("deconvolution_same", targetId);
runTensorFlowNet("deconvolution_stride_2_same", targetId);
runTensorFlowNet("deconvolution_adj_pad_valid", targetId);
runTensorFlowNet("deconvolution_adj_pad_same", targetId);
runTensorFlowNet("keras_deconv_valid", targetId);
runTensorFlowNet("keras_deconv_same", targetId);
}
TEST_P(Test_TensorFlow_layers, matmul)
{
int targetId = GetParam();
runTensorFlowNet("matmul", targetId);
runTensorFlowNet("nhwc_reshape_matmul", targetId);
runTensorFlowNet("nhwc_transpose_reshape_matmul", targetId);
}
TEST_P(Test_TensorFlow_layers, reshape)
{
int targetId = GetParam();
runTensorFlowNet("shift_reshape_no_reorder", targetId);
runTensorFlowNet("reshape_reduce", targetId);
runTensorFlowNet("flatten", targetId, true);
runTensorFlowNet("unfused_flatten", targetId);
runTensorFlowNet("unfused_flatten_unknown_batch", targetId);
}
TEST_P(Test_TensorFlow_layers, l2_normalize)
{
int targetId = GetParam();
runTensorFlowNet("l2_normalize", targetId);
runTensorFlowNet("l2_normalize_3d", targetId);
}
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_layers, availableDnnTargets());
typedef testing::TestWithParam<DNNTarget> Test_TensorFlow_nets;
TEST_P(Test_TensorFlow_nets, MobileNet_SSD)
{
std::string netPath = findDataFile("dnn/ssd_mobilenet_v1_coco.pb", false);
std::string netConfig = findDataFile("dnn/ssd_mobilenet_v1_coco.pbtxt", false);
std::string imgPath = findDataFile("dnn/street.png", false);
Mat inp;
resize(imread(imgPath), inp, Size(300, 300));
inp = blobFromImage(inp, 1.0f / 127.5, Size(), Scalar(127.5, 127.5, 127.5), true);
std::vector<String> outNames(3);
outNames[0] = "concat";
outNames[1] = "concat_1";
outNames[2] = "detection_out";
std::vector<Mat> target(outNames.size());
for (int i = 0; i < outNames.size(); ++i)
{
std::string path = findDataFile("dnn/tensorflow/ssd_mobilenet_v1_coco." + outNames[i] + ".npy", false);
target[i] = blobFromNPY(path);
}
Net net = readNetFromTensorflow(netPath, netConfig);
net.setPreferableTarget(GetParam());
net.setInput(inp);
std::vector<Mat> output;
net.forward(output, outNames);
normAssert(target[0].reshape(1, 1), output[0].reshape(1, 1), "", 1e-5, 1.5e-4);
normAssert(target[1].reshape(1, 1), output[1].reshape(1, 1), "", 1e-5, 3e-4);
normAssertDetections(target[2], output[2], "", 0.2);
}
TEST_P(Test_TensorFlow_nets, Inception_v2_SSD)
{
std::string proto = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", false);
std::string model = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false);
Net net = readNetFromTensorflow(model, proto);
Mat img = imread(findDataFile("dnn/street.png", false));
Mat blob = blobFromImage(img, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), true, false);
net.setPreferableTarget(GetParam());
net.setInput(blob);
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
Mat out = net.forward();
Mat ref = (Mat_<float>(5, 7) << 0, 1, 0.90176028, 0.19872092, 0.36311883, 0.26461923, 0.63498729,
0, 3, 0.93569964, 0.64865261, 0.45906419, 0.80675775, 0.65708131,
0, 3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015,
0, 10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527,
0, 10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384);
normAssertDetections(ref, out, "", 0.5);
}
TEST_P(Test_TensorFlow_nets, opencv_face_detector_uint8)
{
std::string proto = findDataFile("dnn/opencv_face_detector.pbtxt", false);
std::string model = findDataFile("dnn/opencv_face_detector_uint8.pb", false);
Net net = readNetFromTensorflow(model, proto);
Mat img = imread(findDataFile("gpu/lbpcascade/er.png", false));
Mat blob = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false);
net.setPreferableTarget(GetParam());
net.setInput(blob);
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
Mat out = net.forward();
// References are from test for Caffe model.
Mat ref = (Mat_<float>(6, 7) << 0, 1, 0.99520785, 0.80997437, 0.16379407, 0.87996572, 0.26685631,
0, 1, 0.9934696, 0.2831718, 0.50738752, 0.345781, 0.5985168,
0, 1, 0.99096733, 0.13629119, 0.24892329, 0.19756334, 0.3310290,
0, 1, 0.98977017, 0.23901358, 0.09084064, 0.29902688, 0.1769477,
0, 1, 0.97203469, 0.67965847, 0.06876482, 0.73999709, 0.1513494,
0, 1, 0.95097077, 0.51901293, 0.45863652, 0.5777427, 0.5347801);
normAssertDetections(ref, out, "", 0.9, 3.4e-3, 1e-2);
}
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_nets, availableDnnTargets());
typedef testing::TestWithParam<DNNTarget> Test_TensorFlow_fp16;
TEST_P(Test_TensorFlow_fp16, tests)
{
int targetId = GetParam();
const float l1 = 7e-4;
const float lInf = 1e-2;
runTensorFlowNet("fp16_single_conv", targetId, false, l1, lInf);
runTensorFlowNet("fp16_deconvolution", targetId, false, l1, lInf);
runTensorFlowNet("fp16_max_pool_odd_same", targetId, false, l1, lInf);
runTensorFlowNet("fp16_padding_valid", targetId, false, l1, lInf);
runTensorFlowNet("fp16_eltwise_add_mul", targetId, false, l1, lInf);
runTensorFlowNet("fp16_max_pool_odd_valid", targetId, false, l1, lInf);
runTensorFlowNet("fp16_pad_and_concat", targetId, false, l1, lInf);
runTensorFlowNet("fp16_max_pool_even", targetId, false, l1, lInf);
runTensorFlowNet("fp16_padding_same", targetId, false, l1, lInf);
}
INSTANTIATE_TEST_CASE_P(/**/, Test_TensorFlow_fp16,
Values(DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16));
TEST(Test_TensorFlow, defun)
{
runTensorFlowNet("defun_dropout");
}
TEST(Test_TensorFlow, quantized)
{
runTensorFlowNet("uint8_single_conv");
}
TEST(Test_TensorFlow, lstm)
{
runTensorFlowNet("lstm", DNN_TARGET_CPU, true);
}
TEST(Test_TensorFlow, split)
{
runTensorFlowNet("split_equals");
}
TEST(Test_TensorFlow, resize_nearest_neighbor)
{
runTensorFlowNet("resize_nearest_neighbor");
}
TEST(Test_TensorFlow, slice)
{
runTensorFlowNet("slice_4d");
}
TEST(Test_TensorFlow, softmax)
{
runTensorFlowNet("keras_softmax");
}
TEST(Test_TensorFlow, relu6)
{
runTensorFlowNet("keras_relu6");
}
TEST(Test_TensorFlow, keras_mobilenet_head)
{
runTensorFlowNet("keras_mobilenet_head");
}
TEST(Test_TensorFlow, memory_read)
{
double l1 = 1e-5;
double lInf = 1e-4;
runTensorFlowNet("lstm", DNN_TARGET_CPU, true, l1, lInf, true);
runTensorFlowNet("batch_norm", DNN_TARGET_CPU, false, l1, lInf, true);
runTensorFlowNet("fused_batch_norm", DNN_TARGET_CPU, false, l1, lInf, true);
runTensorFlowNet("batch_norm_text", DNN_TARGET_CPU, true, l1, lInf, true);
}
// Test a custom layer.
class ResizeBilinearLayer CV_FINAL : public Layer
{
public:
ResizeBilinearLayer(const LayerParams &params) : Layer(params),
outWidth(0), outHeight(0), factorWidth(1), factorHeight(1)
{
CV_Assert(!params.get<bool>("align_corners", false));
CV_Assert(!blobs.empty());
for (size_t i = 0; i < blobs.size(); ++i)
CV_Assert(blobs[i].type() == CV_32SC1);
if (blobs.size() == 1)
{
CV_Assert(blobs[0].total() == 2);
outHeight = blobs[0].at<int>(0, 0);
outWidth = blobs[0].at<int>(0, 1);
}
else
{
CV_Assert(blobs.size() == 2, blobs[0].total() == 1, blobs[1].total() == 1);
factorHeight = blobs[0].at<int>(0, 0);
factorWidth = blobs[1].at<int>(0, 0);
outHeight = outWidth = 0;
}
}
static Ptr<Layer> create(LayerParams& params)
{
return Ptr<Layer>(new ResizeBilinearLayer(params));
}
virtual bool getMemoryShapes(const std::vector<std::vector<int> > &inputs,
const int requiredOutputs,
std::vector<std::vector<int> > &outputs,
std::vector<std::vector<int> > &internals) const CV_OVERRIDE
{
std::vector<int> outShape(4);
outShape[0] = inputs[0][0]; // batch size
outShape[1] = inputs[0][1]; // number of channels
outShape[2] = outHeight != 0 ? outHeight : (inputs[0][2] * factorHeight);
outShape[3] = outWidth != 0 ? outWidth : (inputs[0][3] * factorWidth);
outputs.assign(1, outShape);
return false;
}
virtual void finalize(const std::vector<Mat*>& inputs, std::vector<Mat> &outputs) CV_OVERRIDE
{
if (!outWidth && !outHeight)
{
outHeight = outputs[0].size[2];
outWidth = outputs[0].size[3];
}
}
// This implementation is based on a reference implementation from
// https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/lite/kernels/internal/reference/reference_ops.h
virtual void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals) CV_OVERRIDE
{
Mat& inp = *inputs[0];
Mat& out = outputs[0];
const float* inpData = (float*)inp.data;
float* outData = (float*)out.data;
const int batchSize = inp.size[0];
const int numChannels = inp.size[1];
const int inpHeight = inp.size[2];
const int inpWidth = inp.size[3];
float heightScale = static_cast<float>(inpHeight) / outHeight;
float widthScale = static_cast<float>(inpWidth) / outWidth;
for (int b = 0; b < batchSize; ++b)
{
for (int y = 0; y < outHeight; ++y)
{
float input_y = y * heightScale;
int y0 = static_cast<int>(std::floor(input_y));
int y1 = std::min(y0 + 1, inpHeight - 1);
for (int x = 0; x < outWidth; ++x)
{
float input_x = x * widthScale;
int x0 = static_cast<int>(std::floor(input_x));
int x1 = std::min(x0 + 1, inpWidth - 1);
for (int c = 0; c < numChannels; ++c)
{
float interpolation =
inpData[offset(inp.size, c, x0, y0, b)] * (1 - (input_y - y0)) * (1 - (input_x - x0)) +
inpData[offset(inp.size, c, x0, y1, b)] * (input_y - y0) * (1 - (input_x - x0)) +
inpData[offset(inp.size, c, x1, y0, b)] * (1 - (input_y - y0)) * (input_x - x0) +
inpData[offset(inp.size, c, x1, y1, b)] * (input_y - y0) * (input_x - x0);
outData[offset(out.size, c, x, y, b)] = interpolation;
}
}
}
}
}
virtual void forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) CV_OVERRIDE {}
private:
static inline int offset(const MatSize& size, int c, int x, int y, int b)
{
return x + size[3] * (y + size[2] * (c + size[1] * b));
}
int outWidth, outHeight, factorWidth, factorHeight;
};
TEST(Test_TensorFlow, resize_bilinear)
{
CV_DNN_REGISTER_LAYER_CLASS(ResizeBilinear, ResizeBilinearLayer);
runTensorFlowNet("resize_bilinear");
runTensorFlowNet("resize_bilinear_factor");
LayerFactory::unregisterLayer("ResizeBilinear");
}
// inp = cv.imread('opencv_extra/testdata/cv/ximgproc/sources/08.png')
// inp = inp[:,:,[2, 1, 0]].astype(np.float32).reshape(1, 512, 512, 3)
// outs = sess.run([sess.graph.get_tensor_by_name('feature_fusion/Conv_7/Sigmoid:0'),
// sess.graph.get_tensor_by_name('feature_fusion/concat_3:0')],
// feed_dict={'input_images:0': inp})
// scores = np.ascontiguousarray(outs[0].transpose(0, 3, 1, 2))
// geometry = np.ascontiguousarray(outs[1].transpose(0, 3, 1, 2))
// np.save('east_text_detection.scores.npy', scores)
// np.save('east_text_detection.geometry.npy', geometry)
TEST(Test_TensorFlow, EAST_text_detection)
{
CV_DNN_REGISTER_LAYER_CLASS(ResizeBilinear, ResizeBilinearLayer);
std::string netPath = findDataFile("dnn/frozen_east_text_detection.pb", false);
std::string imgPath = findDataFile("cv/ximgproc/sources/08.png", false);
std::string refScoresPath = findDataFile("dnn/east_text_detection.scores.npy", false);
std::string refGeometryPath = findDataFile("dnn/east_text_detection.geometry.npy", false);
Net net = readNet(findDataFile("dnn/frozen_east_text_detection.pb", false));
Mat img = imread(imgPath);
Mat inp = blobFromImage(img, 1.0, Size(), Scalar(123.68, 116.78, 103.94), true, false);
net.setInput(inp);
std::vector<Mat> outs;
std::vector<String> outNames(2);
outNames[0] = "feature_fusion/Conv_7/Sigmoid";
outNames[1] = "feature_fusion/concat_3";
net.forward(outs, outNames);
Mat scores = outs[0];
Mat geometry = outs[1];
normAssert(scores, blobFromNPY(refScoresPath), "scores");
normAssert(geometry, blobFromNPY(refGeometryPath), "geometry", 1e-4, 3e-3);
LayerFactory::unregisterLayer("ResizeBilinear");
}
}