|
|
|
#include "opencv2/imgproc/imgproc.hpp"
|
|
|
|
#include "opencv2/highgui/highgui.hpp"
|
|
|
|
#include "opencv2/objdetect/objdetect.hpp"
|
|
|
|
#include <iostream>
|
|
|
|
#include <fstream>
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
#define SHOW_ALL_RECTS_BY_ONE 0
|
|
|
|
|
|
|
|
static void fillColors( vector<Scalar>& colors )
|
|
|
|
{
|
|
|
|
cv::RNG rng = theRNG();
|
|
|
|
|
|
|
|
for( size_t ci = 0; ci < colors.size(); ci++ )
|
|
|
|
colors[ci] = Scalar( rng(256), rng(256), rng(256) );
|
|
|
|
}
|
|
|
|
|
|
|
|
static void readTestImageNames( const string& descrFilename, vector<string>& names )
|
|
|
|
{
|
|
|
|
names.clear();
|
|
|
|
|
|
|
|
ifstream file( descrFilename.c_str() );
|
|
|
|
if ( !file.is_open() )
|
|
|
|
return;
|
|
|
|
|
|
|
|
while( !file.eof() )
|
|
|
|
{
|
|
|
|
string str; getline( file, str );
|
|
|
|
if( str.empty() ) break;
|
|
|
|
if( str[0] == '#' ) continue; // comment
|
|
|
|
names.push_back(str);
|
|
|
|
}
|
|
|
|
file.close();
|
|
|
|
}
|
|
|
|
|
|
|
|
// find -name "image_*.png" | grep -v mask | sed 's/.\///' >> images.txt
|
|
|
|
|
|
|
|
int main( int argc, char **argv )
|
|
|
|
{
|
|
|
|
if( argc != 1 && argc != 3 )
|
|
|
|
{
|
|
|
|
cout << "Format: train_data test_data; " << endl << "or without arguments to use default data" << endl;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
string baseDirName, testDirName;
|
|
|
|
if( argc == 1 )
|
|
|
|
{
|
|
|
|
baseDirName = "../../opencv/samples/cpp/dot_data/train/";
|
|
|
|
testDirName = "../../opencv/samples/cpp/dot_data/test/";
|
|
|
|
}
|
|
|
|
else
|
|
|
|
{
|
|
|
|
baseDirName = argv[1];
|
|
|
|
testDirName = argv[2];
|
|
|
|
baseDirName += (*(baseDirName.end()-1) == '/' ? "" : "/");
|
|
|
|
testDirName += (*(testDirName.end()-1) == '/' ? "" : "/");
|
|
|
|
}
|
|
|
|
|
|
|
|
DOTDetector::TrainParams trainParams;
|
|
|
|
trainParams.winSize = Size(84, 84);
|
|
|
|
trainParams.regionSize = 7;
|
|
|
|
trainParams.minMagnitude = 60; // we ignore pixels with magnitude less then minMagnitude
|
|
|
|
trainParams.maxStrongestCount = 7; // we find such count of strongest gradients for each region
|
|
|
|
trainParams.maxNonzeroBits = 6; // we filter very textured regions (that have more then maxUnzeroBits count of 1s (ones) in the template)
|
|
|
|
trainParams.minRatio = 0.85f;
|
|
|
|
|
|
|
|
// 1. Train detector
|
|
|
|
DOTDetector dotDetector;
|
|
|
|
dotDetector.train( baseDirName, trainParams, true );
|
|
|
|
|
|
|
|
// dotDetector.save( "../../dot.xml.gz" );
|
|
|
|
// dotDetector.load( "../../dot.xml.gz" );
|
|
|
|
|
|
|
|
const vector<string>& objectClassNames = dotDetector.getObjectClassNames();
|
|
|
|
const vector<DOTDetector::DOTTemplate>& dotTemplates = dotDetector.getDOTTemplates();
|
|
|
|
|
|
|
|
vector<Scalar> colors( objectClassNames.size() );
|
|
|
|
fillColors( colors );
|
|
|
|
cout << "Templates count " << dotTemplates.size() << endl;
|
|
|
|
|
|
|
|
vector<string> testFilenames;
|
|
|
|
readTestImageNames( testDirName + "images.txt", testFilenames );
|
|
|
|
if( testFilenames.empty() )
|
|
|
|
{
|
|
|
|
cout << "Can not read no one test images" << endl;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// 2. Detect objects
|
|
|
|
DOTDetector::DetectParams detectParams;
|
|
|
|
detectParams.minRatio = 0.8f;
|
|
|
|
detectParams.minRegionSize = 5;
|
|
|
|
detectParams.maxRegionSize = 11;
|
|
|
|
|
|
|
|
#if SHOW_ALL_RECTS_BY_ONE
|
|
|
|
detectParams.isGroup = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
for( size_t imgIdx = 0; imgIdx < testFilenames.size(); imgIdx++ )
|
|
|
|
{
|
|
|
|
string curFilename = testDirName + testFilenames[imgIdx];
|
|
|
|
cout << curFilename << endl;
|
|
|
|
Mat queryImage = imread( curFilename, 0 );
|
|
|
|
|
|
|
|
if( queryImage.empty() )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
cout << "Detection start ..." << endl;
|
|
|
|
|
|
|
|
vector<vector<Rect> > rects;
|
|
|
|
#if SHOW_ALL_RECTS_BY_ONE
|
|
|
|
vector<vector<float> > ratios;
|
|
|
|
vector<vector<int> > dotTemlateIndices;
|
|
|
|
dotDetector.detectMultiScale( queryImage, rects, detectParams, &ratios, &dotTemlateIndices );
|
|
|
|
|
|
|
|
const vector<DOTDetector::DOTTemplate>& dotTemplates = dotDetector.getDOTTemplates();
|
|
|
|
#else
|
|
|
|
dotDetector.detectMultiScale( queryImage, rects, detectParams );
|
|
|
|
#endif
|
|
|
|
cout << "end" << endl;
|
|
|
|
|
|
|
|
Mat draw;
|
|
|
|
cvtColor( queryImage, draw, CV_GRAY2BGR );
|
|
|
|
|
|
|
|
const int textStep = 25;
|
|
|
|
for( size_t ci = 0; ci < objectClassNames.size(); ci++ )
|
|
|
|
{
|
|
|
|
putText( draw, objectClassNames[ci], Point(textStep, textStep*(1+ci)), 1, 2, colors[ci], 3 );
|
|
|
|
for( size_t ri = 0; ri < rects[ci].size(); ri++ )
|
|
|
|
{
|
|
|
|
rectangle( draw, rects[ci][ri], colors[ci], 3 );
|
|
|
|
|
|
|
|
#if SHOW_ALL_RECTS_BY_ONE
|
|
|
|
int dotTemplateIndex = dotTemlateIndices[ci][ri];
|
|
|
|
const DOTDetector::DOTTemplate::TrainData* trainData = dotTemplates[dotTemplateIndex].getTrainData(ci);
|
|
|
|
|
|
|
|
imshow( "maskedImage", trainData->maskedImage );
|
|
|
|
imshow( "strongestGradientsMask", trainData->strongestGradientsMask );
|
|
|
|
|
|
|
|
Mat scaledDraw;
|
|
|
|
cv::resize( draw, scaledDraw, Size(640, 480) );
|
|
|
|
imshow( "detection result", scaledDraw );
|
|
|
|
|
|
|
|
cv::waitKey();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
Mat scaledDraw;
|
|
|
|
cv::resize( draw, scaledDraw, Size(640, 480) );
|
|
|
|
imshow( "detection result", scaledDraw );
|
|
|
|
|
|
|
|
cv::waitKey();
|
|
|
|
}
|
|
|
|
}
|