mirror of https://github.com/opencv/opencv.git
Open Source Computer Vision Library
https://opencv.org/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
64 lines
2.3 KiB
64 lines
2.3 KiB
11 years ago
|
#include "test_precomp.hpp"
|
||
|
#include <cstdlib>
|
||
|
#include <cmath>
|
||
|
#include <algorithm>
|
||
|
|
||
|
static void mytest(cv::Ptr<cv::optim::DownhillSolver> solver,cv::Ptr<cv::optim::Solver::Function> ptr_F,cv::Mat& x,cv::Mat& step,
|
||
|
cv::Mat& etalon_x,double etalon_res){
|
||
|
solver->setFunction(ptr_F);
|
||
|
int ndim=MAX(step.cols,step.rows);
|
||
|
solver->setInitStep(step);
|
||
|
cv::Mat settedStep;
|
||
|
solver->getInitStep(settedStep);
|
||
|
ASSERT_TRUE(settedStep.rows==1 && settedStep.cols==ndim);
|
||
|
ASSERT_TRUE(std::equal(step.begin<double>(),step.end<double>(),settedStep.begin<double>()));
|
||
|
std::cout<<"step setted:\n\t"<<step<<std::endl;
|
||
|
double res=solver->minimize(x);
|
||
|
std::cout<<"res:\n\t"<<res<<std::endl;
|
||
|
std::cout<<"x:\n\t"<<x<<std::endl;
|
||
|
std::cout<<"etalon_res:\n\t"<<etalon_res<<std::endl;
|
||
|
std::cout<<"etalon_x:\n\t"<<etalon_x<<std::endl;
|
||
|
double tol=solver->getTermCriteria().epsilon;
|
||
|
ASSERT_TRUE(std::abs(res-etalon_res)<tol);
|
||
|
/*for(cv::Mat_<double>::iterator it1=x.begin<double>(),it2=etalon_x.begin<double>();it1!=x.end<double>();it1++,it2++){
|
||
|
ASSERT_TRUE(std::abs((*it1)-(*it2))<tol);
|
||
|
}*/
|
||
|
std::cout<<"--------------------------\n";
|
||
|
}
|
||
|
|
||
|
class SphereF:public cv::optim::Solver::Function{
|
||
|
public:
|
||
|
double calc(const double* x)const{
|
||
|
return x[0]*x[0]+x[1]*x[1];
|
||
|
}
|
||
|
};
|
||
|
class RosenbrockF:public cv::optim::Solver::Function{
|
||
|
double calc(const double* x)const{
|
||
|
return 100*(x[1]-x[0]*x[0])*(x[1]-x[0]*x[0])+(1-x[0])*(1-x[0]);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
TEST(Optim_Downhill, regression_basic){
|
||
|
cv::Ptr<cv::optim::DownhillSolver> solver=cv::optim::createDownhillSolver();
|
||
|
#if 1
|
||
|
{
|
||
|
cv::Ptr<cv::optim::Solver::Function> ptr_F(new SphereF());
|
||
|
cv::Mat x=(cv::Mat_<double>(1,2)<<1.0,1.0),
|
||
|
step=(cv::Mat_<double>(2,1)<<-0.5,-0.5),
|
||
|
etalon_x=(cv::Mat_<double>(1,2)<<-0.0,0.0);
|
||
|
double etalon_res=0.0;
|
||
|
mytest(solver,ptr_F,x,step,etalon_x,etalon_res);
|
||
|
}
|
||
|
#endif
|
||
|
#if 1
|
||
|
{
|
||
|
cv::Ptr<cv::optim::Solver::Function> ptr_F(new RosenbrockF());
|
||
|
cv::Mat x=(cv::Mat_<double>(2,1)<<0.0,0.0),
|
||
|
step=(cv::Mat_<double>(2,1)<<0.5,+0.5),
|
||
|
etalon_x=(cv::Mat_<double>(2,1)<<1.0,1.0);
|
||
|
double etalon_res=0.0;
|
||
|
mytest(solver,ptr_F,x,step,etalon_x,etalon_res);
|
||
|
}
|
||
|
#endif
|
||
|
}
|