Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

116 lines
3.3 KiB

#include <opencv2/objdetect.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>
using namespace cv;
using namespace std;
static void help()
{
cout << "\nThis program demonstrates the use of the HoG descriptor using\n"
" HOGDescriptor::hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());\n"
"Usage:\n"
"./peopledetect --i=<image_filename> | --d=<image_directory>\n\n"
"During execution:\n\tHit q or ESC key to quit.\n"
"\tUsing OpenCV version " << CV_VERSION << "\n" << endl;
}
const char* keys =
{
"{help h||}"
"{image i| ../data/basketball2.png|input image name}"
"{directory d||images directory}"
};
static void detectAndDraw(const HOGDescriptor &hog, Mat &img)
{
vector<Rect> found, found_filtered;
double t = (double) getTickCount();
// Run the detector with default parameters. to get a higher hit-rate
// (and more false alarms, respectively), decrease the hitThreshold and
// groupThreshold (set groupThreshold to 0 to turn off the grouping completely).
hog.detectMultiScale(img, found, 0, Size(8,8), Size(32,32), 1.05, 2);
t = (double) getTickCount() - t;
cout << "detection time = " << (t*1000./cv::getTickFrequency()) << " ms" << endl;
for(size_t i = 0; i < found.size(); i++ )
{
Rect r = found[i];
size_t j;
// Do not add small detections inside a bigger detection.
for ( j = 0; j < found.size(); j++ )
if ( j != i && (r & found[j]) == r )
break;
if ( j == found.size() )
found_filtered.push_back(r);
}
for (size_t i = 0; i < found_filtered.size(); i++)
{
Rect r = found_filtered[i];
// The HOG detector returns slightly larger rectangles than the real objects,
// so we slightly shrink the rectangles to get a nicer output.
r.x += cvRound(r.width*0.1);
r.width = cvRound(r.width*0.8);
r.y += cvRound(r.height*0.07);
r.height = cvRound(r.height*0.8);
rectangle(img, r.tl(), r.br(), cv::Scalar(0,255,0), 3);
}
}
int main(int argc, char** argv)
{
CommandLineParser parser(argc, argv, keys);
if (parser.has("help"))
{
help();
return 0;
}
HOGDescriptor hog;
hog.setSVMDetector(HOGDescriptor::getDefaultPeopleDetector());
namedWindow("people detector", 1);
string pattern_glob = "";
if (parser.has("directory"))
{
pattern_glob = parser.get<string>("directory");
}
else if (parser.has("image"))
{
pattern_glob = parser.get<string>("image");
}
if (!pattern_glob.empty())
{
vector<String> filenames;
String folder(pattern_glob);
glob(folder, filenames);
for (vector<String>::const_iterator it = filenames.begin(); it != filenames.end(); ++it)
{
cout << "\nRead: " << *it << endl;
// Read current image
Mat current_image = imread(*it);
if (current_image.empty())
continue;
detectAndDraw(hog, current_image);
imshow("people detector", current_image);
int c = waitKey(0) & 255;
if ( c == 'q' || c == 'Q' || c == 27)
break;
}
}
return 0;
}