Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

132 lines
4.0 KiB

/*
* matching_test.cpp
*
* Created on: Oct 17, 2010
* Author: ethan
*/
#include <opencv2/opencv.hpp>
#include <vector>
#include <iostream>
using namespace cv;
using std::cout;
using std::cerr;
using std::endl;
using std::vector;
void help(char **av)
{
cerr << "usage: " << av[0] << " im1.jpg im2.jpg"
<< "\n"
<< "This program shows how to use brief to match points in features2d\n"
<< "It takes in two images, finds keypoints and matches them displaying matches and final homography warped results\n"
<< endl;
}
//Copy (x,y) location of descriptor matches found from KeyPoint data structures into Point2f vectors
void matches2points(const vector<DMatch>& matches, const vector<KeyPoint>& kpts_train,
const vector<KeyPoint>& kpts_query, vector<Point2f>& pts_train, vector<Point2f>& pts_query)
{
pts_train.clear();
pts_query.clear();
pts_train.reserve(matches.size());
pts_query.reserve(matches.size());
for (size_t i = 0; i < matches.size(); i++)
{
const DMatch& match = matches[i];
pts_query.push_back(kpts_query[match.queryIdx].pt);
pts_train.push_back(kpts_train[match.trainIdx].pt);
}
}
float match(const vector<KeyPoint>& kpts_train, const vector<KeyPoint>& kpts_query, DescriptorMatcher& matcher,
const Mat& train, const Mat& query, vector<DMatch>& matches)
{
double t = (double)getTickCount();
matcher.match(query, train, matches); //Using features2d
return ((double)getTickCount() - t) / getTickFrequency();
}
int main(int ac, char ** av)
{
if (ac != 3)
{
help(av);
return 1;
}
string im1_name, im2_name;
im1_name = av[1];
im2_name = av[2];
Mat im1 = imread(im1_name, CV_LOAD_IMAGE_GRAYSCALE);
Mat im2 = imread(im2_name, CV_LOAD_IMAGE_GRAYSCALE);
if (im1.empty() || im2.empty())
{
cerr << "could not open one of the images..." << endl;
return 1;
}
double t = (double)getTickCount();
FastFeatureDetector detector(50);
BriefDescriptorExtractor extractor(32); //this is really 32 x 8 matches since they are binary matches packed into bytes
vector<KeyPoint> kpts_1, kpts_2;
detector.detect(im1, kpts_1);
detector.detect(im2, kpts_2);
t = ((double)getTickCount() - t) / getTickFrequency();
cout << "found " << kpts_1.size() << " keypoints in " << im1_name << endl << "fount " << kpts_2.size()
<< " keypoints in " << im2_name << endl << "took " << t << " seconds." << endl;
Mat desc_1, desc_2;
cout << "computing descriptors..." << endl;
t = (double)getTickCount();
extractor.compute(im1, kpts_1, desc_1);
extractor.compute(im2, kpts_2, desc_2);
t = ((double)getTickCount() - t) / getTickFrequency();
cout << "done computing descriptors... took " << t << " seconds" << endl;
//Do matching with 2 methods using features2d
cout << "matching with BruteForceMatcher<HammingLUT>" << endl;
BruteForceMatcher<HammingLUT> matcher;
vector<DMatch> matches_lut;
float lut_time = match(kpts_1, kpts_2, matcher, desc_1, desc_2, matches_lut);
cout << "done BruteForceMatcher<HammingLUT> matching. took " << lut_time << " seconds" << endl;
cout << "matching with BruteForceMatcher<Hamming>" << endl;
BruteForceMatcher<Hamming> matcher_popcount;
vector<DMatch> matches_popcount;
float pop_time = match(kpts_1, kpts_2, matcher_popcount, desc_1, desc_2, matches_popcount);
cout << "done BruteForceMatcher<Hamming> matching. took " << pop_time << " seconds" << endl;
vector<Point2f> mpts_1, mpts_2;
matches2points(matches_popcount, kpts_1, kpts_2, mpts_1, mpts_2); //Extract a list of the (x,y) location of the matches
vector<uchar> outlier_mask;
Mat H = findHomography(Mat(mpts_2), Mat(mpts_1), outlier_mask, RANSAC, 1);
Mat outimg;
drawMatches(im2, kpts_2, im1, kpts_1, matches_popcount, outimg, Scalar::all(-1), Scalar::all(-1),
reinterpret_cast<const vector<char>&> (outlier_mask));
imshow("matches - popcount - outliers removed", outimg);
Mat warped;
warpPerspective(im2, warped, H, im1.size());
imshow("warped", warped);
imshow("diff", im1 - warped);
waitKey();
return 0;
}