|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Intel License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of Intel Corporation may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
|
|
|
|
using cv::ml::SVM;
|
|
|
|
using cv::ml::TrainData;
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------
|
|
|
|
class CV_SVMTrainAutoTest : public cvtest::BaseTest {
|
|
|
|
public:
|
|
|
|
CV_SVMTrainAutoTest() {}
|
|
|
|
protected:
|
|
|
|
virtual void run( int start_from );
|
|
|
|
};
|
|
|
|
|
|
|
|
void CV_SVMTrainAutoTest::run( int /*start_from*/ )
|
|
|
|
{
|
|
|
|
int datasize = 100;
|
|
|
|
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
|
|
|
|
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
|
|
|
|
|
|
|
|
RNG rng(0);
|
|
|
|
for (int i = 0; i < datasize; ++i)
|
|
|
|
{
|
|
|
|
int response = rng.uniform(0, 2); // Random from {0, 1}.
|
|
|
|
samples.at<float>( i, 0 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
|
|
|
|
samples.at<float>( i, 1 ) = rng.uniform(0.f, 0.5f) + response * 0.5f;
|
|
|
|
responses.at<int>( i, 0 ) = response;
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Ptr<TrainData> data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
|
|
|
|
cv::Ptr<SVM> svm = SVM::create();
|
|
|
|
svm->trainAuto( data, 10 ); // 2-fold cross validation.
|
|
|
|
|
|
|
|
float test_data0[2] = {0.25f, 0.25f};
|
|
|
|
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
|
|
|
|
float result0 = svm->predict( test_point0 );
|
|
|
|
float test_data1[2] = {0.75f, 0.75f};
|
|
|
|
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
|
|
|
|
float result1 = svm->predict( test_point1 );
|
|
|
|
|
|
|
|
if ( fabs( result0 - 0 ) > 0.001 || fabs( result1 - 1 ) > 0.001 )
|
|
|
|
{
|
|
|
|
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ML_SVM, trainauto) { CV_SVMTrainAutoTest test; test.safe_run(); }
|
|
|
|
|
|
|
|
|
|
|
|
TEST(ML_SVM, trainAuto_regression_5369)
|
|
|
|
{
|
|
|
|
int datasize = 100;
|
|
|
|
cv::Mat samples = cv::Mat::zeros( datasize, 2, CV_32FC1 );
|
|
|
|
cv::Mat responses = cv::Mat::zeros( datasize, 1, CV_32S );
|
|
|
|
|
|
|
|
RNG rng(0); // fixed!
|
|
|
|
for (int i = 0; i < datasize; ++i)
|
|
|
|
{
|
|
|
|
int response = rng.uniform(0, 2); // Random from {0, 1}.
|
|
|
|
samples.at<float>( i, 0 ) = 0;
|
|
|
|
samples.at<float>( i, 1 ) = (0.5f - response) * rng.uniform(0.f, 1.2f) + response;
|
|
|
|
responses.at<int>( i, 0 ) = response;
|
|
|
|
}
|
|
|
|
|
|
|
|
cv::Ptr<TrainData> data = TrainData::create( samples, cv::ml::ROW_SAMPLE, responses );
|
|
|
|
cv::Ptr<SVM> svm = SVM::create();
|
|
|
|
svm->trainAuto( data, 10 ); // 2-fold cross validation.
|
|
|
|
|
|
|
|
float test_data0[2] = {0.25f, 0.25f};
|
|
|
|
cv::Mat test_point0 = cv::Mat( 1, 2, CV_32FC1, test_data0 );
|
|
|
|
float result0 = svm->predict( test_point0 );
|
|
|
|
float test_data1[2] = {0.75f, 0.75f};
|
|
|
|
cv::Mat test_point1 = cv::Mat( 1, 2, CV_32FC1, test_data1 );
|
|
|
|
float result1 = svm->predict( test_point1 );
|
|
|
|
|
|
|
|
EXPECT_EQ(0., result0);
|
|
|
|
EXPECT_EQ(1., result1);
|
|
|
|
}
|
|
|
|
|
|
|
|
class CV_SVMGetSupportVectorsTest : public cvtest::BaseTest {
|
|
|
|
public:
|
|
|
|
CV_SVMGetSupportVectorsTest() {}
|
|
|
|
protected:
|
|
|
|
virtual void run( int startFrom );
|
|
|
|
};
|
|
|
|
void CV_SVMGetSupportVectorsTest::run(int /*startFrom*/ )
|
|
|
|
{
|
|
|
|
int code = cvtest::TS::OK;
|
|
|
|
|
|
|
|
// Set up training data
|
|
|
|
int labels[4] = {1, -1, -1, -1};
|
|
|
|
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
|
|
|
|
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
|
|
|
|
Mat labelsMat(4, 1, CV_32SC1, labels);
|
|
|
|
|
|
|
|
Ptr<SVM> svm = SVM::create();
|
|
|
|
svm->setType(SVM::C_SVC);
|
|
|
|
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6));
|
|
|
|
|
|
|
|
|
|
|
|
// Test retrieval of SVs and compressed SVs on linear SVM
|
|
|
|
svm->setKernel(SVM::LINEAR);
|
|
|
|
svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat);
|
|
|
|
|
|
|
|
Mat sv = svm->getSupportVectors();
|
|
|
|
CV_Assert(sv.rows == 1); // by default compressed SV returned
|
|
|
|
sv = svm->getUncompressedSupportVectors();
|
|
|
|
CV_Assert(sv.rows == 3);
|
|
|
|
|
|
|
|
|
|
|
|
// Test retrieval of SVs and compressed SVs on non-linear SVM
|
|
|
|
svm->setKernel(SVM::POLY);
|
|
|
|
svm->setDegree(2);
|
|
|
|
svm->train(trainingDataMat, cv::ml::ROW_SAMPLE, labelsMat);
|
|
|
|
|
|
|
|
sv = svm->getSupportVectors();
|
|
|
|
CV_Assert(sv.rows == 3);
|
|
|
|
sv = svm->getUncompressedSupportVectors();
|
|
|
|
CV_Assert(sv.rows == 0); // inapplicable for non-linear SVMs
|
|
|
|
|
|
|
|
|
|
|
|
ts->set_failed_test_info(code);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
TEST(ML_SVM, getSupportVectors) { CV_SVMGetSupportVectorsTest test; test.safe_run(); }
|
|
|
|
|
|
|
|
}} // namespace
|