|
|
|
///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
|
|
|
|
// This is a implementation of the Logistic Regression algorithm in C++ in OpenCV.
|
|
|
|
|
|
|
|
// AUTHOR:
|
|
|
|
// Rahul Kavi rahulkavi[at]live[at]com
|
|
|
|
//
|
|
|
|
|
|
|
|
// contains a subset of data from the popular Iris Dataset (taken from "http://archive.ics.uci.edu/ml/datasets/Iris")
|
|
|
|
|
|
|
|
// # You are free to use, change, or redistribute the code in any way you wish for
|
|
|
|
// # non-commercial purposes, but please maintain the name of the original author.
|
|
|
|
// # This code comes with no warranty of any kind.
|
|
|
|
|
|
|
|
// #
|
|
|
|
// # You are free to use, change, or redistribute the code in any way you wish for
|
|
|
|
// # non-commercial purposes, but please maintain the name of the original author.
|
|
|
|
// # This code comes with no warranty of any kind.
|
|
|
|
|
|
|
|
// # Logistic Regression ALGORITHM
|
|
|
|
|
|
|
|
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2008-2011, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
|
|
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
|
|
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
|
|
|
|
#include "test_precomp.hpp"
|
|
|
|
|
|
|
|
namespace opencv_test { namespace {
|
|
|
|
|
|
|
|
bool calculateError( const Mat& _p_labels, const Mat& _o_labels, float& error)
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
error = 0.0f;
|
|
|
|
float accuracy = 0.0f;
|
|
|
|
Mat _p_labels_temp;
|
|
|
|
Mat _o_labels_temp;
|
|
|
|
_p_labels.convertTo(_p_labels_temp, CV_32S);
|
|
|
|
_o_labels.convertTo(_o_labels_temp, CV_32S);
|
|
|
|
|
|
|
|
CV_Assert(_p_labels_temp.total() == _o_labels_temp.total());
|
|
|
|
CV_Assert(_p_labels_temp.rows == _o_labels_temp.rows);
|
|
|
|
|
|
|
|
accuracy = (float)countNonZero(_p_labels_temp == _o_labels_temp)/_p_labels_temp.rows;
|
|
|
|
error = 1 - accuracy;
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
class CV_LRTest : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_LRTest() {}
|
|
|
|
protected:
|
|
|
|
virtual void run( int start_from );
|
|
|
|
};
|
|
|
|
|
|
|
|
void CV_LRTest::run( int /*start_from*/ )
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
// initialize variables from the popular Iris Dataset
|
|
|
|
string dataFileName = ts->get_data_path() + "iris.data";
|
|
|
|
Ptr<TrainData> tdata = TrainData::loadFromCSV(dataFileName, 0);
|
|
|
|
|
|
|
|
if (tdata.empty()) {
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_INVALID_TEST_DATA);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
// run LR classifier train classifier
|
|
|
|
Ptr<LogisticRegression> p = LogisticRegression::create();
|
|
|
|
p->setLearningRate(1.0);
|
|
|
|
p->setIterations(10001);
|
|
|
|
p->setRegularization(LogisticRegression::REG_L2);
|
|
|
|
p->setTrainMethod(LogisticRegression::BATCH);
|
|
|
|
p->setMiniBatchSize(10);
|
|
|
|
p->train(tdata);
|
|
|
|
|
|
|
|
// predict using the same data
|
|
|
|
Mat responses;
|
|
|
|
p->predict(tdata->getSamples(), responses);
|
|
|
|
|
|
|
|
// calculate error
|
|
|
|
int test_code = cvtest::TS::OK;
|
|
|
|
float error = 0.0f;
|
|
|
|
if(!calculateError(responses, tdata->getResponses(), error))
|
|
|
|
{
|
|
|
|
ts->printf(cvtest::TS::LOG, "Bad prediction labels\n" );
|
|
|
|
test_code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
|
|
|
}
|
|
|
|
else if(error > 0.05f)
|
|
|
|
{
|
|
|
|
ts->printf(cvtest::TS::LOG, "Bad accuracy of (%f)\n", error);
|
|
|
|
test_code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
|
|
}
|
|
|
|
|
|
|
|
{
|
|
|
|
FileStorage s("debug.xml", FileStorage::WRITE);
|
|
|
|
s << "original" << tdata->getResponses();
|
|
|
|
s << "predicted1" << responses;
|
|
|
|
s << "learnt" << p->get_learnt_thetas();
|
|
|
|
s << "error" << error;
|
|
|
|
s.release();
|
|
|
|
}
|
|
|
|
ts->set_failed_test_info(test_code);
|
|
|
|
}
|
|
|
|
|
|
|
|
//--------------------------------------------------------------------------------------------
|
|
|
|
class CV_LRTest_SaveLoad : public cvtest::BaseTest
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
CV_LRTest_SaveLoad(){}
|
|
|
|
protected:
|
|
|
|
virtual void run(int start_from);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
void CV_LRTest_SaveLoad::run( int /*start_from*/ )
|
|
|
|
{
|
|
|
|
CV_TRACE_FUNCTION();
|
|
|
|
int code = cvtest::TS::OK;
|
|
|
|
|
|
|
|
// initialize variables from the popular Iris Dataset
|
|
|
|
string dataFileName = ts->get_data_path() + "iris.data";
|
|
|
|
Ptr<TrainData> tdata = TrainData::loadFromCSV(dataFileName, 0);
|
|
|
|
|
|
|
|
Mat responses1, responses2;
|
|
|
|
Mat learnt_mat1, learnt_mat2;
|
|
|
|
|
|
|
|
// train and save the classifier
|
|
|
|
String filename = tempfile(".xml");
|
|
|
|
try
|
|
|
|
{
|
|
|
|
// run LR classifier train classifier
|
|
|
|
Ptr<LogisticRegression> lr1 = LogisticRegression::create();
|
|
|
|
lr1->setLearningRate(1.0);
|
|
|
|
lr1->setIterations(10001);
|
|
|
|
lr1->setRegularization(LogisticRegression::REG_L2);
|
|
|
|
lr1->setTrainMethod(LogisticRegression::BATCH);
|
|
|
|
lr1->setMiniBatchSize(10);
|
|
|
|
lr1->train(tdata);
|
|
|
|
lr1->predict(tdata->getSamples(), responses1);
|
|
|
|
learnt_mat1 = lr1->get_learnt_thetas();
|
|
|
|
lr1->save(filename);
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ts->printf(cvtest::TS::LOG, "Crash in write method.\n" );
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
|
|
|
|
}
|
|
|
|
|
|
|
|
// and load to another
|
|
|
|
try
|
|
|
|
{
|
|
|
|
Ptr<LogisticRegression> lr2 = Algorithm::load<LogisticRegression>(filename);
|
|
|
|
lr2->predict(tdata->getSamples(), responses2);
|
|
|
|
learnt_mat2 = lr2->get_learnt_thetas();
|
|
|
|
}
|
|
|
|
catch(...)
|
|
|
|
{
|
|
|
|
ts->printf(cvtest::TS::LOG, "Crash in write method.\n" );
|
|
|
|
ts->set_failed_test_info(cvtest::TS::FAIL_EXCEPTION);
|
|
|
|
}
|
|
|
|
|
|
|
|
CV_Assert(responses1.rows == responses2.rows);
|
|
|
|
|
|
|
|
// compare difference in learnt matrices before and after loading from disk
|
|
|
|
Mat comp_learnt_mats;
|
|
|
|
comp_learnt_mats = (learnt_mat1 == learnt_mat2);
|
|
|
|
comp_learnt_mats = comp_learnt_mats.reshape(1, comp_learnt_mats.rows*comp_learnt_mats.cols);
|
|
|
|
comp_learnt_mats.convertTo(comp_learnt_mats, CV_32S);
|
|
|
|
comp_learnt_mats = comp_learnt_mats/255;
|
|
|
|
|
|
|
|
// compare difference in prediction outputs and stored inputs
|
|
|
|
// check if there is any difference between computed learnt mat and retrieved mat
|
|
|
|
|
|
|
|
float errorCount = 0.0;
|
|
|
|
errorCount += 1 - (float)countNonZero(responses1 == responses2)/responses1.rows;
|
|
|
|
errorCount += 1 - (float)sum(comp_learnt_mats)[0]/comp_learnt_mats.rows;
|
|
|
|
|
|
|
|
if(errorCount>0)
|
|
|
|
{
|
|
|
|
ts->printf( cvtest::TS::LOG, "Different prediction results before writing and after reading (errorCount=%d).\n", errorCount );
|
|
|
|
code = cvtest::TS::FAIL_BAD_ACCURACY;
|
|
|
|
}
|
|
|
|
|
|
|
|
remove( filename.c_str() );
|
|
|
|
|
|
|
|
ts->set_failed_test_info( code );
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ML_LR, accuracy) { CV_LRTest test; test.safe_run(); }
|
|
|
|
TEST(ML_LR, save_load) { CV_LRTest_SaveLoad test; test.safe_run(); }
|
|
|
|
|
|
|
|
}} // namespace
|