|
|
|
import cv2 as cv
|
|
|
|
import argparse
|
|
|
|
import numpy as np
|
|
|
|
import sys
|
|
|
|
|
|
|
|
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
|
|
|
|
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD)
|
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description='Use this script to run semantic segmentation deep learning networks using OpenCV.')
|
|
|
|
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
|
|
|
|
parser.add_argument('--model', required=True,
|
|
|
|
help='Path to a binary file of model contains trained weights. '
|
|
|
|
'It could be a file with extensions .caffemodel (Caffe), '
|
|
|
|
'.pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet)')
|
|
|
|
parser.add_argument('--config',
|
|
|
|
help='Path to a text file of model contains network configuration. '
|
|
|
|
'It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet)')
|
|
|
|
parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'],
|
|
|
|
help='Optional name of an origin framework of the model. '
|
|
|
|
'Detect it automatically if it does not set.')
|
|
|
|
parser.add_argument('--classes', help='Optional path to a text file with names of classes.')
|
|
|
|
parser.add_argument('--colors', help='Optional path to a text file with colors for an every class. '
|
|
|
|
'An every color is represented with three values from 0 to 255 in BGR channels order.')
|
|
|
|
parser.add_argument('--mean', nargs='+', type=float, default=[0, 0, 0],
|
|
|
|
help='Preprocess input image by subtracting mean values. '
|
|
|
|
'Mean values should be in BGR order.')
|
|
|
|
parser.add_argument('--scale', type=float, default=1.0,
|
|
|
|
help='Preprocess input image by multiplying on a scale factor.')
|
|
|
|
parser.add_argument('--width', type=int, required=True,
|
|
|
|
help='Preprocess input image by resizing to a specific width.')
|
|
|
|
parser.add_argument('--height', type=int, required=True,
|
|
|
|
help='Preprocess input image by resizing to a specific height.')
|
|
|
|
parser.add_argument('--rgb', action='store_true',
|
|
|
|
help='Indicate that model works with RGB input images instead BGR ones.')
|
|
|
|
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
|
|
|
|
help="Choose one of computation backends: "
|
|
|
|
"%d: automatically (by default), "
|
|
|
|
"%d: Halide language (http://halide-lang.org/), "
|
|
|
|
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
|
|
|
|
"%d: OpenCV implementation" % backends)
|
|
|
|
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
|
|
|
|
help='Choose one of target computation devices: '
|
|
|
|
'%d: CPU target (by default), '
|
|
|
|
'%d: OpenCL, '
|
|
|
|
'%d: OpenCL fp16 (half-float precision), '
|
|
|
|
'%d: VPU' % targets)
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
|
|
np.random.seed(324)
|
|
|
|
|
|
|
|
# Load names of classes
|
|
|
|
classes = None
|
|
|
|
if args.classes:
|
|
|
|
with open(args.classes, 'rt') as f:
|
|
|
|
classes = f.read().rstrip('\n').split('\n')
|
|
|
|
|
|
|
|
# Load colors
|
|
|
|
colors = None
|
|
|
|
if args.colors:
|
|
|
|
with open(args.colors, 'rt') as f:
|
|
|
|
colors = [np.array(color.split(' '), np.uint8) for color in f.read().rstrip('\n').split('\n')]
|
|
|
|
|
|
|
|
legend = None
|
|
|
|
def showLegend(classes):
|
|
|
|
global legend
|
|
|
|
if not classes is None and legend is None:
|
|
|
|
blockHeight = 30
|
|
|
|
assert(len(classes) == len(colors))
|
|
|
|
|
|
|
|
legend = np.zeros((blockHeight * len(colors), 200, 3), np.uint8)
|
|
|
|
for i in range(len(classes)):
|
|
|
|
block = legend[i * blockHeight:(i + 1) * blockHeight]
|
|
|
|
block[:,:] = colors[i]
|
|
|
|
cv.putText(block, classes[i], (0, blockHeight/2), cv.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255))
|
|
|
|
|
|
|
|
cv.namedWindow('Legend', cv.WINDOW_NORMAL)
|
|
|
|
cv.imshow('Legend', legend)
|
|
|
|
classes = None
|
|
|
|
|
|
|
|
# Load a network
|
|
|
|
net = cv.dnn.readNet(args.model, args.config, args.framework)
|
|
|
|
net.setPreferableBackend(args.backend)
|
|
|
|
net.setPreferableTarget(args.target)
|
|
|
|
|
|
|
|
winName = 'Deep learning image classification in OpenCV'
|
|
|
|
cv.namedWindow(winName, cv.WINDOW_NORMAL)
|
|
|
|
|
|
|
|
cap = cv.VideoCapture(args.input if args.input else 0)
|
|
|
|
legend = None
|
|
|
|
while cv.waitKey(1) < 0:
|
|
|
|
hasFrame, frame = cap.read()
|
|
|
|
if not hasFrame:
|
|
|
|
cv.waitKey()
|
|
|
|
break
|
|
|
|
|
|
|
|
# Create a 4D blob from a frame.
|
|
|
|
blob = cv.dnn.blobFromImage(frame, args.scale, (args.width, args.height), args.mean, args.rgb, crop=False)
|
|
|
|
|
|
|
|
# Run a model
|
|
|
|
net.setInput(blob)
|
|
|
|
score = net.forward()
|
|
|
|
|
|
|
|
numClasses = score.shape[1]
|
|
|
|
height = score.shape[2]
|
|
|
|
width = score.shape[3]
|
|
|
|
|
|
|
|
# Draw segmentation
|
|
|
|
if not colors:
|
|
|
|
# Generate colors
|
|
|
|
colors = [np.array([0, 0, 0], np.uint8)]
|
|
|
|
for i in range(1, numClasses):
|
|
|
|
colors.append((colors[i - 1] + np.random.randint(0, 256, [3], np.uint8)) / 2)
|
|
|
|
|
|
|
|
classIds = np.argmax(score[0], axis=0)
|
|
|
|
segm = np.stack([colors[idx] for idx in classIds.flatten()])
|
|
|
|
segm = segm.reshape(height, width, 3)
|
|
|
|
|
|
|
|
segm = cv.resize(segm, (frame.shape[1], frame.shape[0]), interpolation=cv.INTER_NEAREST)
|
|
|
|
frame = (0.1 * frame + 0.9 * segm).astype(np.uint8)
|
|
|
|
|
|
|
|
# Put efficiency information.
|
|
|
|
t, _ = net.getPerfProfile()
|
|
|
|
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
|
|
|
|
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
|
|
|
|
|
|
|
|
showLegend(classes)
|
|
|
|
|
|
|
|
cv.imshow(winName, frame)
|