|
|
|
import numpy as np
|
|
|
|
import cv2
|
|
|
|
|
|
|
|
def load_base(fn):
|
|
|
|
a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
|
|
|
|
samples, responses = a[:,1:], a[:,0]
|
|
|
|
return samples, responses
|
|
|
|
|
|
|
|
class LetterStatModel(object):
|
|
|
|
class_n = 26
|
|
|
|
train_ratio = 0.5
|
|
|
|
|
|
|
|
def load(self, fn):
|
|
|
|
self.model.load(fn)
|
|
|
|
def save(self, fn):
|
|
|
|
self.model.save(fn)
|
|
|
|
|
|
|
|
def unroll_samples(self, samples):
|
|
|
|
sample_n, var_n = samples.shape
|
|
|
|
new_samples = np.zeros((sample_n * self.class_n, var_n+1), np.float32)
|
|
|
|
new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0)
|
|
|
|
new_samples[:,-1] = np.tile(np.arange(self.class_n), sample_n)
|
|
|
|
return new_samples
|
|
|
|
|
|
|
|
def unroll_responses(self, responses):
|
|
|
|
sample_n = len(responses)
|
|
|
|
new_responses = np.zeros(sample_n*self.class_n, np.int32)
|
|
|
|
resp_idx = np.int32( responses + np.arange(sample_n)*self.class_n )
|
|
|
|
new_responses[resp_idx] = 1
|
|
|
|
return new_responses
|
|
|
|
|
|
|
|
class RTrees(LetterStatModel):
|
|
|
|
def __init__(self):
|
|
|
|
self.model = cv2.RTrees()
|
|
|
|
|
|
|
|
def train(self, samples, responses):
|
|
|
|
sample_n, var_n = samples.shape
|
|
|
|
var_types = np.array([cv2.CV_VAR_NUMERICAL] * var_n + [cv2.CV_VAR_CATEGORICAL], np.uint8)
|
|
|
|
#CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER));
|
|
|
|
params = dict(max_depth=10 )
|
|
|
|
self.model.train(samples, cv2.CV_ROW_SAMPLE, responses, varType = var_types, params = params)
|
|
|
|
|
|
|
|
def predict(self, samples):
|
|
|
|
return np.float32( [self.model.predict(s) for s in samples] )
|
|
|
|
|
|
|
|
|
|
|
|
class KNearest(LetterStatModel):
|
|
|
|
def __init__(self):
|
|
|
|
self.model = cv2.KNearest()
|
|
|
|
|
|
|
|
def train(self, samples, responses):
|
|
|
|
self.model.train(samples, responses)
|
|
|
|
|
|
|
|
def predict(self, samples):
|
|
|
|
retval, results, neigh_resp, dists = self.model.find_nearest(samples, k = 10)
|
|
|
|
return results.ravel()
|
|
|
|
|
|
|
|
|
|
|
|
class Boost(LetterStatModel):
|
|
|
|
def __init__(self):
|
|
|
|
self.model = cv2.Boost()
|
|
|
|
|
|
|
|
def train(self, samples, responses):
|
|
|
|
sample_n, var_n = samples.shape
|
|
|
|
new_samples = self.unroll_samples(samples)
|
|
|
|
new_responses = self.unroll_responses(responses)
|
|
|
|
var_types = np.array([cv2.CV_VAR_NUMERICAL] * var_n + [cv2.CV_VAR_CATEGORICAL, cv2.CV_VAR_CATEGORICAL], np.uint8)
|
|
|
|
#CvBoostParams(CvBoost::REAL, 100, 0.95, 5, false, 0 )
|
|
|
|
params = dict(max_depth=5) #, use_surrogates=False)
|
|
|
|
self.model.train(new_samples, cv2.CV_ROW_SAMPLE, new_responses, varType = var_types, params=params)
|
|
|
|
|
|
|
|
def predict(self, samples):
|
|
|
|
new_samples = self.unroll_samples(samples)
|
|
|
|
pred = np.array( [self.model.predict(s, returnSum = True) for s in new_samples] )
|
|
|
|
pred = pred.reshape(-1, self.class_n).argmax(1)
|
|
|
|
return pred
|
|
|
|
|
|
|
|
|
|
|
|
class SVM(LetterStatModel):
|
|
|
|
train_ratio = 0.1
|
|
|
|
def __init__(self):
|
|
|
|
self.model = cv2.SVM()
|
|
|
|
|
|
|
|
def train(self, samples, responses):
|
|
|
|
params = dict( kernel_type = cv2.SVM_LINEAR,
|
|
|
|
svm_type = cv2.SVM_C_SVC,
|
|
|
|
C = 1 )
|
|
|
|
self.model.train(samples, responses, params = params)
|
|
|
|
|
|
|
|
def predict(self, samples):
|
|
|
|
return np.float32( [self.model.predict(s) for s in samples] )
|
|
|
|
|
|
|
|
|
|
|
|
class MLP(LetterStatModel):
|
|
|
|
def __init__(self):
|
|
|
|
self.model = cv2.ANN_MLP()
|
|
|
|
|
|
|
|
def train(self, samples, responses):
|
|
|
|
sample_n, var_n = samples.shape
|
|
|
|
new_responses = self.unroll_responses(responses).reshape(-1, self.class_n)
|
|
|
|
|
|
|
|
layer_sizes = np.int32([var_n, 100, 100, self.class_n])
|
|
|
|
self.model.create(layer_sizes)
|
|
|
|
|
|
|
|
# CvANN_MLP_TrainParams::BACKPROP,0.001
|
|
|
|
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01),
|
|
|
|
train_method = cv2.ANN_MLP_TRAIN_PARAMS_BACKPROP,
|
|
|
|
bp_dw_scale = 0.001,
|
|
|
|
bp_moment_scale = 0.0 )
|
|
|
|
self.model.train(samples, np.float32(new_responses), None, params = params)
|
|
|
|
|
|
|
|
def predict(self, samples):
|
|
|
|
ret, resp = self.model.predict(samples)
|
|
|
|
return resp.argmax(-1)
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
import getopt
|
|
|
|
import sys
|
|
|
|
|
|
|
|
models = [RTrees, KNearest, Boost, SVM, MLP] # NBayes
|
|
|
|
models = dict( [(cls.__name__.lower(), cls) for cls in models] )
|
|
|
|
|
|
|
|
print 'USAGE: letter_recog.py [--model <model>] [--data <data fn>] [--load <model fn>] [--save <model fn>]'
|
|
|
|
print 'Models: ', ', '.join(models)
|
|
|
|
print
|
|
|
|
|
|
|
|
args, dummy = getopt.getopt(sys.argv[1:], '', ['model=', 'data=', 'load=', 'save='])
|
|
|
|
args = dict(args)
|
|
|
|
args.setdefault('--model', 'rtrees')
|
|
|
|
args.setdefault('--data', '../cpp/letter-recognition.data')
|
|
|
|
|
|
|
|
print 'loading data %s ...' % args['--data']
|
|
|
|
samples, responses = load_base(args['--data'])
|
|
|
|
Model = models[args['--model']]
|
|
|
|
model = Model()
|
|
|
|
|
|
|
|
train_n = int(len(samples)*model.train_ratio)
|
|
|
|
if '--load' in args:
|
|
|
|
fn = args['--load']
|
|
|
|
print 'loading model from %s ...' % fn
|
|
|
|
model.load(fn)
|
|
|
|
else:
|
|
|
|
print 'training %s ...' % Model.__name__
|
|
|
|
model.train(samples[:train_n], responses[:train_n])
|
|
|
|
|
|
|
|
print 'testing...'
|
|
|
|
train_rate = np.mean(model.predict(samples[:train_n]) == responses[:train_n])
|
|
|
|
test_rate = np.mean(model.predict(samples[train_n:]) == responses[train_n:])
|
|
|
|
|
|
|
|
print 'train rate: %f test rate: %f' % (train_rate*100, test_rate*100)
|
|
|
|
|
|
|
|
if '--save' in args:
|
|
|
|
fn = args['--save']
|
|
|
|
print 'saving model to %s ...' % fn
|
|
|
|
model.save(fn)
|