Open Source Computer Vision Library https://opencv.org/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

101 lines
2.9 KiB

#!/usr/bin/env python
# Python 2/3 compatibility
from __future__ import print_function
import numpy as np
import cv2
# built-in modules
import os
import sys
# local modules
import video
from common import mosaic
from digits import *
def main():
try:
src = sys.argv[1]
except:
src = 0
cap = video.create_capture(src)
classifier_fn = 'digits_svm.dat'
if not os.path.exists(classifier_fn):
print('"%s" not found, run digits.py first' % classifier_fn)
return
if True:
model = cv2.ml.SVM_load(classifier_fn)
else:
model = cv2.ml.SVM_create()
model.load_(classifier_fn) #Known bug: https://github.com/opencv/opencv/issues/4969
while True:
ret, frame = cap.read()
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
bin = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 31, 10)
bin = cv2.medianBlur(bin, 3)
_, contours, heirs = cv2.findContours( bin.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_SIMPLE)
try:
heirs = heirs[0]
except:
heirs = []
for cnt, heir in zip(contours, heirs):
_, _, _, outer_i = heir
if outer_i >= 0:
continue
x, y, w, h = cv2.boundingRect(cnt)
if not (16 <= h <= 64 and w <= 1.2*h):
continue
pad = max(h-w, 0)
x, w = x-pad/2, w+pad
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0))
bin_roi = bin[y:,x:][:h,:w]
gray_roi = gray[y:,x:][:h,:w]
m = bin_roi != 0
if not 0.1 < m.mean() < 0.4:
continue
'''
v_in, v_out = gray_roi[m], gray_roi[~m]
if v_out.std() > 10.0:
continue
s = "%f, %f" % (abs(v_in.mean() - v_out.mean()), v_out.std())
cv2.putText(frame, s, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
'''
s = 1.5*float(h)/SZ
m = cv2.moments(bin_roi)
c1 = np.float32([m['m10'], m['m01']]) / m['m00']
c0 = np.float32([SZ/2, SZ/2])
t = c1 - s*c0
A = np.zeros((2, 3), np.float32)
A[:,:2] = np.eye(2)*s
A[:,2] = t
bin_norm = cv2.warpAffine(bin_roi, A, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
bin_norm = deskew(bin_norm)
if x+w+SZ < frame.shape[1] and y+SZ < frame.shape[0]:
frame[y:,x+w:][:SZ, :SZ] = bin_norm[...,np.newaxis]
sample = preprocess_hog([bin_norm])
digit = model.predict(sample)[0]
cv2.putText(frame, '%d'%digit, (x, y), cv2.FONT_HERSHEY_PLAIN, 1.0, (200, 0, 0), thickness = 1)
cv2.imshow('frame', frame)
cv2.imshow('bin', bin)
ch = cv2.waitKey(1) & 0xFF
if ch == 27:
break
if __name__ == '__main__':
main()