|
|
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
//
|
|
|
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
|
|
|
//
|
|
|
|
// By downloading, copying, installing or using the software you agree to this license.
|
|
|
|
// If you do not agree to this license, do not download, install,
|
|
|
|
// copy or use the software.
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// License Agreement
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
//
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without modification,
|
|
|
|
// are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistribution's of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
//
|
|
|
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
//
|
|
|
|
// * The name of the copyright holders may not be used to endorse or promote products
|
|
|
|
// derived from this software without specific prior written permission.
|
|
|
|
//
|
|
|
|
// This software is provided by the copyright holders and contributors "as is" and
|
|
|
|
// any express or implied warranties, including, but not limited to, the implied
|
|
|
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
|
|
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
|
|
|
// indirect, incidental, special, exemplary, or consequential damages
|
|
|
|
// (including, but not limited to, procurement of substitute goods or services;
|
|
|
|
// loss of use, data, or profits; or business interruption) however caused
|
|
|
|
// and on any theory of liability, whether in contract, strict liability,
|
|
|
|
// or tort (including negligence or otherwise) arising in any way out of
|
|
|
|
// the use of this software, even if advised of the possibility of such damage.
|
|
|
|
//
|
|
|
|
//M*/
|
|
|
|
|
|
|
|
#include "precomp.hpp"
|
|
|
|
|
|
|
|
using namespace cv;
|
|
|
|
using namespace cv::cuda;
|
|
|
|
|
|
|
|
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
|
|
|
|
|
|
|
Ptr<cuda::BackgroundSubtractorGMG> cv::cuda::createBackgroundSubtractorGMG(int, double) { throw_no_cuda(); return Ptr<cuda::BackgroundSubtractorGMG>(); }
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
namespace cv { namespace cuda { namespace device {
|
|
|
|
namespace gmg
|
|
|
|
{
|
|
|
|
void loadConstants(int width, int height, float minVal, float maxVal, int quantizationLevels, float backgroundPrior,
|
|
|
|
float decisionThreshold, int maxFeatures, int numInitializationFrames);
|
|
|
|
|
|
|
|
template <typename SrcT>
|
|
|
|
void update_gpu(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures,
|
|
|
|
int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
|
|
|
|
}
|
|
|
|
}}}
|
|
|
|
|
|
|
|
namespace
|
|
|
|
{
|
|
|
|
class GMGImpl : public cuda::BackgroundSubtractorGMG
|
|
|
|
{
|
|
|
|
public:
|
|
|
|
GMGImpl(int initializationFrames, double decisionThreshold);
|
|
|
|
|
|
|
|
void apply(InputArray image, OutputArray fgmask, double learningRate=-1);
|
|
|
|
void apply(InputArray image, OutputArray fgmask, double learningRate, Stream& stream);
|
|
|
|
|
|
|
|
void getBackgroundImage(OutputArray backgroundImage) const;
|
|
|
|
|
|
|
|
int getMaxFeatures() const { return maxFeatures_; }
|
|
|
|
void setMaxFeatures(int maxFeatures) { maxFeatures_ = maxFeatures; }
|
|
|
|
|
|
|
|
double getDefaultLearningRate() const { return learningRate_; }
|
|
|
|
void setDefaultLearningRate(double lr) { learningRate_ = (float) lr; }
|
|
|
|
|
|
|
|
int getNumFrames() const { return numInitializationFrames_; }
|
|
|
|
void setNumFrames(int nframes) { numInitializationFrames_ = nframes; }
|
|
|
|
|
|
|
|
int getQuantizationLevels() const { return quantizationLevels_; }
|
|
|
|
void setQuantizationLevels(int nlevels) { quantizationLevels_ = nlevels; }
|
|
|
|
|
|
|
|
double getBackgroundPrior() const { return backgroundPrior_; }
|
|
|
|
void setBackgroundPrior(double bgprior) { backgroundPrior_ = (float) bgprior; }
|
|
|
|
|
|
|
|
int getSmoothingRadius() const { return smoothingRadius_; }
|
|
|
|
void setSmoothingRadius(int radius) { smoothingRadius_ = radius; }
|
|
|
|
|
|
|
|
double getDecisionThreshold() const { return decisionThreshold_; }
|
|
|
|
void setDecisionThreshold(double thresh) { decisionThreshold_ = (float) thresh; }
|
|
|
|
|
|
|
|
bool getUpdateBackgroundModel() const { return updateBackgroundModel_; }
|
|
|
|
void setUpdateBackgroundModel(bool update) { updateBackgroundModel_ = update; }
|
|
|
|
|
|
|
|
double getMinVal() const { return minVal_; }
|
|
|
|
void setMinVal(double val) { minVal_ = (float) val; }
|
|
|
|
|
|
|
|
double getMaxVal() const { return maxVal_; }
|
|
|
|
void setMaxVal(double val) { maxVal_ = (float) val; }
|
|
|
|
|
|
|
|
private:
|
|
|
|
void initialize(Size frameSize, float min, float max);
|
|
|
|
|
|
|
|
//! Total number of distinct colors to maintain in histogram.
|
|
|
|
int maxFeatures_;
|
|
|
|
|
|
|
|
//! Set between 0.0 and 1.0, determines how quickly features are "forgotten" from histograms.
|
|
|
|
float learningRate_;
|
|
|
|
|
|
|
|
//! Number of frames of video to use to initialize histograms.
|
|
|
|
int numInitializationFrames_;
|
|
|
|
|
|
|
|
//! Number of discrete levels in each channel to be used in histograms.
|
|
|
|
int quantizationLevels_;
|
|
|
|
|
|
|
|
//! Prior probability that any given pixel is a background pixel. A sensitivity parameter.
|
|
|
|
float backgroundPrior_;
|
|
|
|
|
|
|
|
//! Smoothing radius, in pixels, for cleaning up FG image.
|
|
|
|
int smoothingRadius_;
|
|
|
|
|
|
|
|
//! Value above which pixel is determined to be FG.
|
|
|
|
float decisionThreshold_;
|
|
|
|
|
|
|
|
//! Perform background model update.
|
|
|
|
bool updateBackgroundModel_;
|
|
|
|
|
|
|
|
float minVal_, maxVal_;
|
|
|
|
|
|
|
|
Size frameSize_;
|
|
|
|
int frameNum_;
|
|
|
|
|
|
|
|
GpuMat nfeatures_;
|
|
|
|
GpuMat colors_;
|
|
|
|
GpuMat weights_;
|
|
|
|
|
|
|
|
#if defined(HAVE_OPENCV_CUDAFILTERS) && defined(HAVE_OPENCV_CUDAARITHM)
|
|
|
|
Ptr<cuda::Filter> boxFilter_;
|
|
|
|
GpuMat buf_;
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
GMGImpl::GMGImpl(int initializationFrames, double decisionThreshold)
|
|
|
|
{
|
|
|
|
maxFeatures_ = 64;
|
|
|
|
learningRate_ = 0.025f;
|
|
|
|
numInitializationFrames_ = initializationFrames;
|
|
|
|
quantizationLevels_ = 16;
|
|
|
|
backgroundPrior_ = 0.8f;
|
|
|
|
decisionThreshold_ = (float) decisionThreshold;
|
|
|
|
smoothingRadius_ = 7;
|
|
|
|
updateBackgroundModel_ = true;
|
|
|
|
minVal_ = maxVal_ = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void GMGImpl::apply(InputArray image, OutputArray fgmask, double learningRate)
|
|
|
|
{
|
|
|
|
apply(image, fgmask, learningRate, Stream::Null());
|
|
|
|
}
|
|
|
|
|
|
|
|
void GMGImpl::apply(InputArray _frame, OutputArray _fgmask, double newLearningRate, Stream& stream)
|
|
|
|
{
|
|
|
|
using namespace cv::cuda::device::gmg;
|
|
|
|
|
|
|
|
typedef void (*func_t)(PtrStepSzb frame, PtrStepb fgmask, PtrStepSzi colors, PtrStepf weights, PtrStepi nfeatures,
|
|
|
|
int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream);
|
|
|
|
static const func_t funcs[6][4] =
|
|
|
|
{
|
|
|
|
{update_gpu<uchar>, 0, update_gpu<uchar3>, update_gpu<uchar4>},
|
|
|
|
{0,0,0,0},
|
|
|
|
{update_gpu<ushort>, 0, update_gpu<ushort3>, update_gpu<ushort4>},
|
|
|
|
{0,0,0,0},
|
|
|
|
{0,0,0,0},
|
|
|
|
{update_gpu<float>, 0, update_gpu<float3>, update_gpu<float4>}
|
|
|
|
};
|
|
|
|
|
|
|
|
GpuMat frame = _frame.getGpuMat();
|
|
|
|
|
|
|
|
CV_Assert( frame.depth() == CV_8U || frame.depth() == CV_16U || frame.depth() == CV_32F );
|
|
|
|
CV_Assert( frame.channels() == 1 || frame.channels() == 3 || frame.channels() == 4 );
|
|
|
|
|
|
|
|
if (newLearningRate != -1.0)
|
|
|
|
{
|
|
|
|
CV_Assert( newLearningRate >= 0.0 && newLearningRate <= 1.0 );
|
|
|
|
learningRate_ = (float) newLearningRate;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (frame.size() != frameSize_)
|
|
|
|
{
|
|
|
|
double minVal = minVal_;
|
|
|
|
double maxVal = maxVal_;
|
|
|
|
|
|
|
|
if (minVal_ == 0 && maxVal_ == 0)
|
|
|
|
{
|
|
|
|
minVal = 0;
|
|
|
|
maxVal = frame.depth() == CV_8U ? 255.0 : frame.depth() == CV_16U ? std::numeric_limits<ushort>::max() : 1.0;
|
|
|
|
}
|
|
|
|
|
|
|
|
initialize(frame.size(), (float) minVal, (float) maxVal);
|
|
|
|
}
|
|
|
|
|
|
|
|
_fgmask.create(frameSize_, CV_8UC1);
|
|
|
|
GpuMat fgmask = _fgmask.getGpuMat();
|
|
|
|
|
|
|
|
fgmask.setTo(Scalar::all(0), stream);
|
|
|
|
|
|
|
|
funcs[frame.depth()][frame.channels() - 1](frame, fgmask, colors_, weights_, nfeatures_, frameNum_,
|
|
|
|
learningRate_, updateBackgroundModel_, StreamAccessor::getStream(stream));
|
|
|
|
|
|
|
|
#if defined(HAVE_OPENCV_CUDAFILTERS) && defined(HAVE_OPENCV_CUDAARITHM)
|
|
|
|
// medianBlur
|
|
|
|
if (smoothingRadius_ > 0)
|
|
|
|
{
|
|
|
|
boxFilter_->apply(fgmask, buf_, stream);
|
|
|
|
const int minCount = (smoothingRadius_ * smoothingRadius_ + 1) / 2;
|
|
|
|
const double thresh = 255.0 * minCount / (smoothingRadius_ * smoothingRadius_);
|
|
|
|
cuda::threshold(buf_, fgmask, thresh, 255.0, THRESH_BINARY, stream);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// keep track of how many frames we have processed
|
|
|
|
++frameNum_;
|
|
|
|
}
|
|
|
|
|
|
|
|
void GMGImpl::getBackgroundImage(OutputArray backgroundImage) const
|
|
|
|
{
|
|
|
|
(void) backgroundImage;
|
|
|
|
CV_Error(Error::StsNotImplemented, "Not implemented");
|
|
|
|
}
|
|
|
|
|
|
|
|
void GMGImpl::initialize(Size frameSize, float min, float max)
|
|
|
|
{
|
|
|
|
using namespace cv::cuda::device::gmg;
|
|
|
|
|
|
|
|
CV_Assert( maxFeatures_ > 0 );
|
|
|
|
CV_Assert( learningRate_ >= 0.0f && learningRate_ <= 1.0f);
|
|
|
|
CV_Assert( numInitializationFrames_ >= 1);
|
|
|
|
CV_Assert( quantizationLevels_ >= 1 && quantizationLevels_ <= 255);
|
|
|
|
CV_Assert( backgroundPrior_ >= 0.0f && backgroundPrior_ <= 1.0f);
|
|
|
|
|
|
|
|
minVal_ = min;
|
|
|
|
maxVal_ = max;
|
|
|
|
CV_Assert( minVal_ < maxVal_ );
|
|
|
|
|
|
|
|
frameSize_ = frameSize;
|
|
|
|
|
|
|
|
frameNum_ = 0;
|
|
|
|
|
|
|
|
nfeatures_.create(frameSize_, CV_32SC1);
|
|
|
|
colors_.create(maxFeatures_ * frameSize_.height, frameSize_.width, CV_32SC1);
|
|
|
|
weights_.create(maxFeatures_ * frameSize_.height, frameSize_.width, CV_32FC1);
|
|
|
|
|
|
|
|
nfeatures_.setTo(Scalar::all(0));
|
|
|
|
|
|
|
|
#if defined(HAVE_OPENCV_CUDAFILTERS) && defined(HAVE_OPENCV_CUDAARITHM)
|
|
|
|
if (smoothingRadius_ > 0)
|
|
|
|
boxFilter_ = cuda::createBoxFilter(CV_8UC1, -1, Size(smoothingRadius_, smoothingRadius_));
|
|
|
|
#endif
|
|
|
|
|
|
|
|
loadConstants(frameSize_.width, frameSize_.height, minVal_, maxVal_,
|
|
|
|
quantizationLevels_, backgroundPrior_, decisionThreshold_, maxFeatures_, numInitializationFrames_);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Ptr<cuda::BackgroundSubtractorGMG> cv::cuda::createBackgroundSubtractorGMG(int initializationFrames, double decisionThreshold)
|
|
|
|
{
|
|
|
|
return makePtr<GMGImpl>(initializationFrames, decisionThreshold);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|